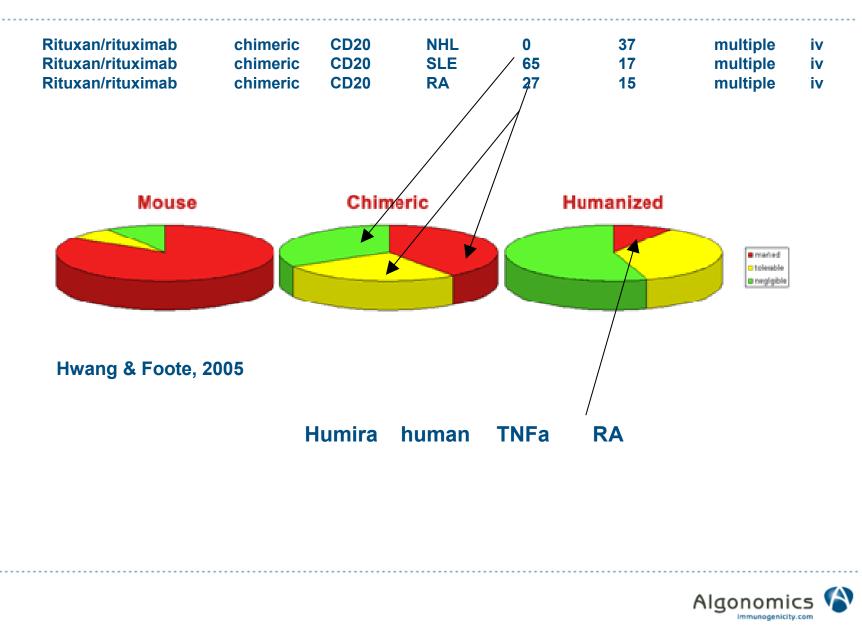


Immunogenicity of biotherapeutics

Algonomics 2008, all rights reserved

Immune response


Observed Immunogenicity

Therapeutic protein	Туре	Target	Indication	Assay	AR (%)	Рор	Sup r
OKT3	murine	CD3	Graft rejection	ELISA	54	82	+
Bexxar/tositumomab	murine	CD20	Non-Hodgkin's lymphoma	ELISA	9	55	+
Reopro/abciximab	chimeric	GPIIb/IIIa	Coronary angioplasty	ELISA	21	500	
Remicade/infliximab	chimeric	TNFα	Crohn's disease		9	199	+
Remicade/infliximab	chimeric	TNFα	Crohn's disease	ELISA	61	125	+
Remicade/infliximab	chimeric	TNFα	Rheumatoid arthritis	ELISA	8	60	+
Rituxan/rituximab	chimeric	CD20	Non-Hodgkin's lymphoma	ELISA	0	37	
Rituxan/rituximab	chimeric	CD20	Systemic lupus erythematosus	ELISA	65	17	+
Rituxan/rituximab	chimeric	CD20	Primary Sjogren's syndrome	RIA	27	15	+
Raptiva/efalizumab	humanised	CD11a	Psoriasis		2.3	501	
Raptiva/efalizumab	humanised	CD11a	Psoriasis		4	292	+
Raptiva/efalizumab	humanised	CD11a	Psoriasis	ELISA	6	1063	
Campath/alemtuzumab	humanised	CD52	Rheumatoid arthritis		63	40	
Campath/alemtuzumab	humanised	CD52	Rheumatoid arthritis		29	31	
Campath/alemtuzumab	humanised	CD52	Rheumatoid arthritis		53	30	
Campath/alemtuzumab	humanised	CD52	B-cell lymphoma		1.9	211	
Humira/adalimumab	human	ΤΝΓα	Rheumatoid arthritis	ELISA	5	1062	+

Van Walle et al, Expert Opin. Biol. Ther., 7(3)

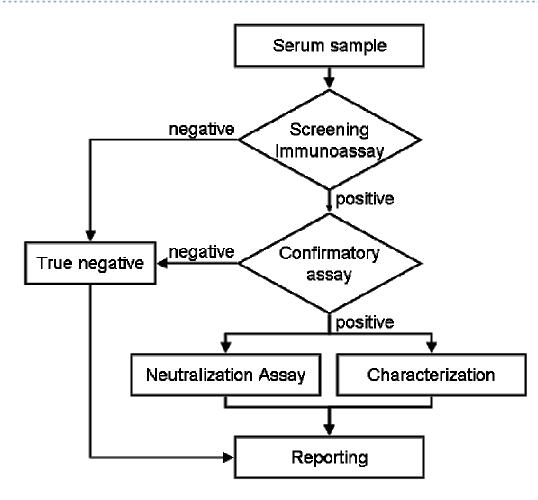
Therapeutic antibodies

European Medicines Agency

London, 13 December 2007 Doc. Ref. EMEA/CHMP/BMWP/14327/2006

COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP)

GUIDELINE ON IMMUNOGENICITY ASSESSMENT OF BIOTECHNOLOGY-DERIVED THERAPEUTIC PROTEINS



Immunogenicity assessment

ADA screening strategy

Preclinical Immunogenicity Assessment

GUIDELINE ON IMMUNOGENICITY ASSESSMENT OF BIOTECHNOLOGY-DERIVED THERAPEUTIC PROTEINS

Doc. Ref. EMEA/CHMP/BMWP/14327/2006

4.2 Non-clinical assessment of immunogenicity and its consequences

Therapeutic proteins show species differences in most cases. Thus, human proteins will be recognised as foreign proteins by animals. For this reason, the predictivity of non-clinical studies for evaluation of immunogenicity is considered low.

Non-clinical studies aiming at predicting immunogenicity in humans are normally not required.

However, ongoing consideration should be given to the use of emerging technologies (novel *in vivo, in vitro and in silico models*), which might be used as tools.

Preclinical Immunogenicity Assessment

CONCEPT PAPER ON IMMUNOGENICITY ASSESSMENT OF MONOCLONAL ANTIBODIES INTENDED FOR IN VIVO CLINICAL USE

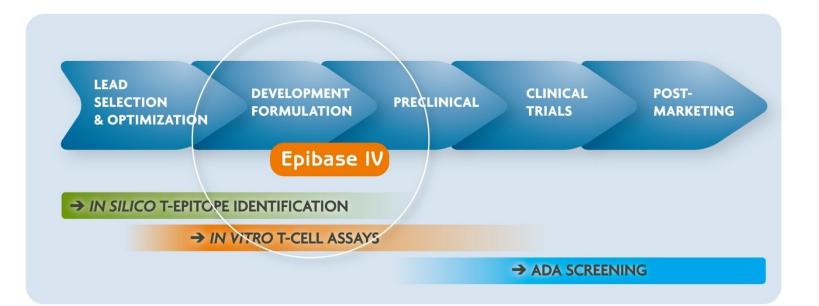
Doc. Ref. EMEA/CHMP/BMWP/114720/2009 (DRAFT)

1. Discussion

Recently developed combinations of in-silico and T-cell based procedures are showing promise for predicting potential immunogenicity with some biologicals including mAbs. Identification of epitopes associated with induction or suppression of immune responses has been possible.

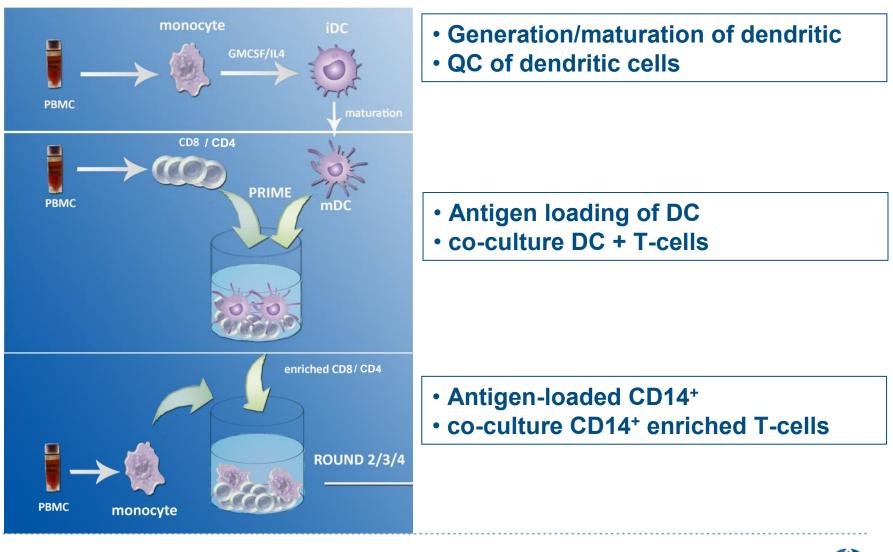
4. Recommendations

The main topics to be addressed include: (6 topics)


• • •

- Approaches which may be helpful in predicting unwanted immunogenicity of mAbs.

•••



Immunogenicity assessment

Adaptive immunity : Induction of naïve T-cell responses

Algonomic

mmunogenicity.co

11

in vitro T cell assays:

1

2

3

4

• Blood collection and HLA typing (50 donors)

PBMC isolation
 Monocytes purification
 QC on viability and polyclonal activation potential

• Evaluate direct drug effects on PBMC (whether they interfere with cell survival)

• Identify optimal parameters on T cell responses

- Time kinetics: Naive or recall response
 - Functional assays

Assay characterization on extend donor population

Healthy PBMCs

Dissect possible noises derived from product formulations (buffers, etc)

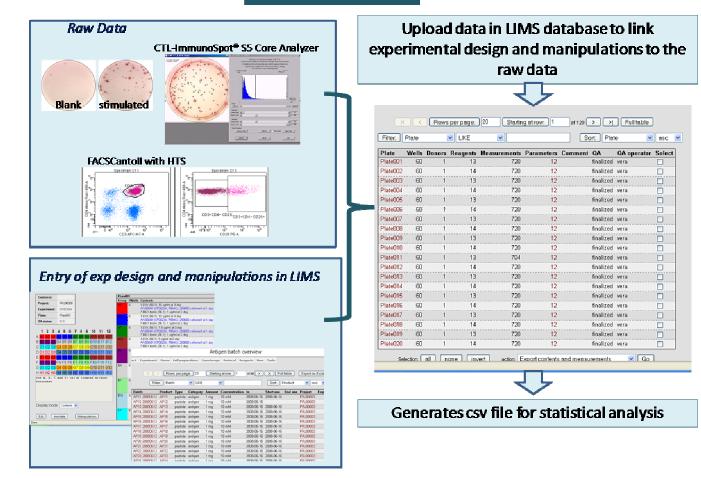
Optimized kinetics on whole proteins or peptides

Optimized, multi-parameter measurement

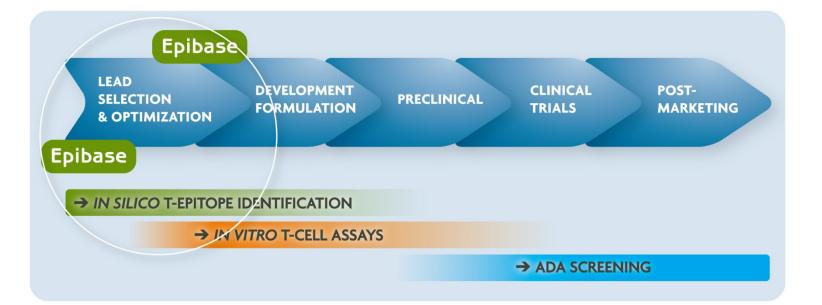
Response

Assessment of recall responses to **peptides** (CEFT) qualifies the multi-parameter flow cytometry assay and enriched IFN-g Elspot for determining the recall responses to vaccins.

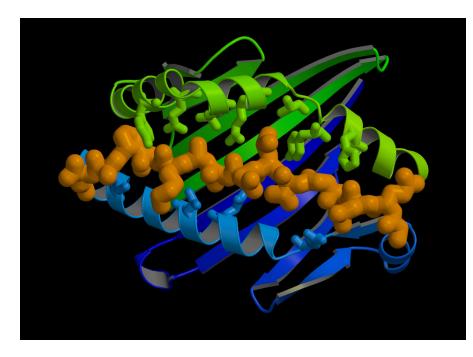
Analysis parameter : % responsive donors in a set of 15 healthy community donor samples


IFN- γ spotforming units PBMC, Δ frequency of activated wells (FCM) CD3⁺CD4⁺

	Peptide (properties)	Elispot IFN-γ	Flow cytometry
Negative contol peptides	AP3 (non-binding self)	0%	6%
Positive control peptides	CEFT (binding – non self – recall)	100%	94%


Multiparameter Measurements

EPIBASEIV Data flow


Immunogenicity assessment

Classical Predictive Methods

- Position matrices:
 - Score each position in the peptide for "likelihood" to fit in "pockets"
 - Sum those scores => epitope vs. non--epitope

Epibase[®]

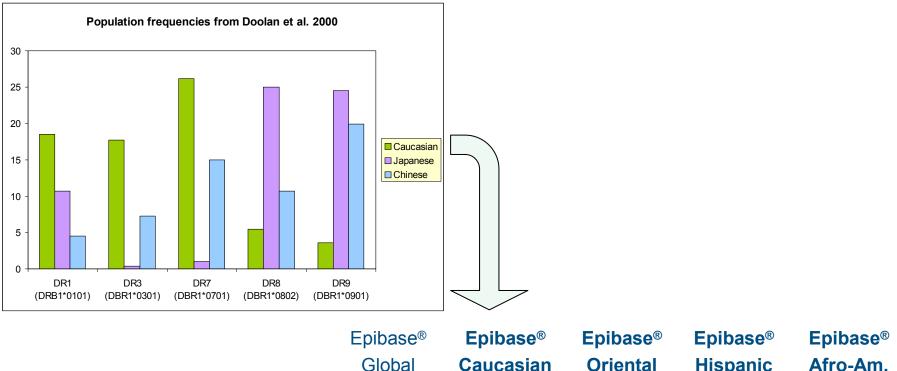
1. Model building

- Template identification: retrieve HLA subtypes of known 3-D structure that are at least 50% identical to a given HLA subtype
- Build a 3-D structure

2. Run the proprietary FASTER algorithm

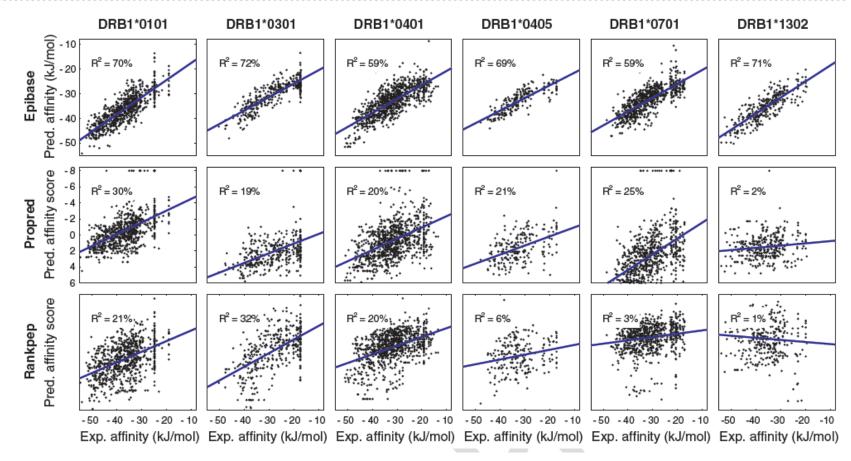
- Select relevant part of the receptor
- Include the flexibility of side chains

3. Determine


- Binding affinity
- Promiscuity

EP 1226528, Proteins, 2002

Proteins, 2005



MHCII population frequencies

	Global	Caucasian	Oriental	Hispanic	Afro-Am.
DR	45	27	29	26	24
DQ	23	14	14	N/A	N/A
DP	10	7	8	N/A	N/A

Van Walle et al, Expert Opin. Biol. Ther., 7(3) 2007

Case study: Adalimumab

- Human antibody recognizing TNF-α isolated by phage-display technology
- Study performed in collaboration with Sanquin and Genmab.

Immunoprofiling of Adalimumab

- Epibase profiling
 - Epitope identification on full sequence
 - Removal of epitopes present in the human germline
 - Critical epitopes are identified as the strong and medium binders to DRB1, and the strong binders to DRB3/4/5, DQ and DP.
- 7 strong epitopes described:
 - 5 strong epitopes in the VH
 - 2 in the FwR2-HCDR2 region
 - 3 in the FwR3-HCDR3 region
 - 2 strong epitopes in the VL:
 - LCDR1 and FwR3-LCDR3

Study design

- 109 RA patient enrolled for the study
- Patients were tested for:
 - HAHA response (low, high) determined from the binding of the Humira F(ab')2 fragment to protein A absorbed patient IgG
 - DQ, DR high resolution typing no DP typing was done as no strong epitopes were identified by Epibase[®]

Patient data

- Level of HAHA response
 - 19 patients show a HAHA response, i.e.
 17.6% of the patients are HAHA +
- RA associated HLA allotypes:

<u>Allotype</u>	<u>Caucasian</u>	<u>RA group</u>
DRB1*0101	17.2%	28.4%
DRB1*0401	9.8%	52.3%
DRB1*0404	5.9%	9.2%

Epitopes and HAHA response

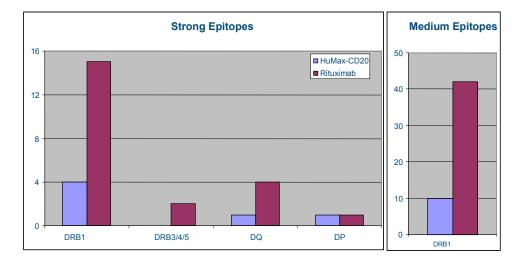
- •The 7 strong epitopes explain 17/19 HAHA+ patients
- •Epitopes are directed against the RA associated allotypes

<u>Epitopes</u>	<u>Region</u>	<u>HLA allotypes</u>	<u>HAHA+ patients</u>
1	FwR2-HCDR2	DRB1*0701	1
2	FwR2-HCDR2	DQA1*0201 DQB1*0303	1
		DQA1*0401 DQB1*0402	
		DQA1*0501 DQB1*0301	3
		DRB1*0101	4
		DRB1*0401	7
		DRB1*0405	1
		DRB1*0407	
		DRB1*0901	1
3	FwR3-HCDR3	DRB5*0101	5
4	FwR3-HCDR3	DRB1*0407	
5	FwR3-HCDR3	DRB1*0801	
6	LCDR1	DQA1*0501 DQB1*0201	3
7	FwR3-LCDR3	DRB5*0101	5

Conclusions

- HAHA+ patients can be explained on basis of the critical epitopes as defined by *in silico* analysis
- RA associated HLA allotypes contribute to HAHA+ response against Humira
- Research project continued to:
 - Measure the epitopes in this patient group using immunological techniques.
 - Measure epitopes in non-MTX population

Case study 2: Ofatumumab and Rituximab


- Targeting CD20, a B-cell differentiation antigen
- Treatment of
 - Cancer: e.g. Follicular lymphoma.
 - Inflammatory disease: e.g. Rheumatoid arthritis, SLE
- Observed immunogenicity of Rituximab:
 - <1% in B-CLL
 - 35-60% in SLE
 - 4.3-23% in RA
 - Chimeric antibody
- Ofatumumab:
 - Phase III in B-CLL
 - Phase III in RA
 - Fully human antibody

Immunoprofile Ofatumumab and Rituximab

•Ofatumumab is very clean in epitopes as compared to rituximab

•Ofatumumab contains no epitopes for HLA allotypes associated with RA

HLA class II gene	RA Risk ratio
DRB1*0401	1 in 35
DRB1*0404	1 in 20
DRB1*0101	1 in 80
0401 and 0404	1 in 7

Epitopes in	Epitopes in
rituximab	ofatumumab
2 strong	Νο
no	no
4 strong	no
2 strong	no

