

Binding Antibodies: Assay Methodologies, Screening Confirmation, Characterization of Anti-Drug-Antibodies

EIP Open Symposium Kopenhagen 2012

Daniel Kramer, Global DMPK, Merck Serono, Germany

1st Tier: Screening Assay Radio-Immunoprecipitation (RIP)

1st Tier: Screening Assay Radio-Immunoprecipitation (RIP)

Advantages

- Sensitivity
- Rather high drug tolerance

Disadvantages:

- Low throughput
- Restricted availability of CROs
- Specificity (prone to artefacts)
- Radiolabelling process can mask/denature epitopes recognized by anti-drug antibodies
- Protein A/G are known of having different affinities to different isotypes

1st Tier: Screening Assay **Direct ELISA**

1st Tier: Screening Assay Direct ELISA

- Advantages:
 - Sensitivity
 - Commercial available secondary antibodies
- Disadvantages:
 - Source of the positive control has to be the same as that of the antidrug antibodies
 - Specificity (unspecific binding to matrix components)
 - Restricted detection of low-affinity antibodies

- Advantages
 - High throughput
 - Specificity (two-fold binding of drug required for signal)
 - Possibility to use any positive control binding to the drug (independent of species)
- Disadvantages
 - Sensitivity (special orientation of immobilized drug required)
 - Restricted detection of low-affinity antibodies
 - Biotinylation might mask/denature epitopes recognized by anti-drug antibodies

Masking of binding epitopes by biotin

Ru(bpy)₃²⁺: Sulfo TAG TPA: Tripropylamine

- Advantages
 - Electrochemiluminescence technology offers sensitivity and large dynamic range
 - Less washing steps allow the detection of low affinity anti-drug antibodies
 - Better tolerance for drug than ELISA
 - Possibility for multiplexing (epitope mapping)
- Disadvantages
 - The use of two conjugated reagents increases the risk of masking of binding epitopes

Drug Interference

Positive samples were spiked with increasing amounts of drug and analyzed in Mesoscale and (bridging) ELISA

Drug immobilized on sensorchip

Injection of serum containing anti-drug antibodies

Immobilize drug Inject serum containing anti-drug antibodies

Inject drug

Inject anti Ig antibodies

- Advantages:
 - Large dynamic range
 - No secondary reagents required
 - Detection of low affinity antibodies
 - Sensograms include information about affinity of anti-drug antibodies
 - Easy procedure for isotyping
 - Easy procedure for epitope mapping
- Disadvantages:
 - Structure of drug might be influenced by chemical coupling
 - Less sensitive than ELISA
 - Time consuming
 - Costs

Sensograms contain information about affinity of anti-drug antibodies

1st Tier: Screening Assay Biacore Drug Interference

 Positive samples were spiked with increasing amounts of drug and analyzed in Biacore and (bridging) ELISA

1st Tier: Screening Assay Biacore Low Affinity Antibodies

22

Epitope Mapping

1st Tier: Screening Assay Gyros

Gyrolab CD microlaboratory

Segment

Microstructure

Prepacked colums Streptavidin bead

1st Tier: Screening Assay Gyros

- Advantages:
 - The Gyros technology offers sensitivity and large dynamic range
 - Detection of low affinity antibodies (homogenous format)
 - Rather high drug tolerance (homogenous format)
 - Requires only small sample volumes
 - Epitope mapping possible
 - High throughput
 - Automatization reduces variability (less manual pipetting steps)
- Disadvantages:
 - The use of two conjugated reagents increases the risk of masking of binding epitopes
 - Costs
 - Carry over

1st Tier: Screening Assay Cut-Point

Problem: Immunogenicity is a relative thing => criteria for positive samples needed

- Determination of the "non specific background" (NSB) by testing of 50 serum samples of untreated animals or patients on three different days
- Cut-Point: NSB + 1.645 x Standard Deviation (=> 5 % false positives)
- Positive: Response > Cut-Point

1st Tier: Screening Assay Some Statistics

1st Tier: Screening Assay Normalization of Cut-Point

Problem: Usually assay signal will vary between runs => Cut-Point normalization necessary

Normalization factor = relative response Cut-Point – relative response negative control

For each batch the normalization factor is added to the relative response of the negative control to set the cutpoint

2nd Tier: Confirmatory Assay

- Due to the 5% false-positive rate built into the screening cut point, samples showing a response at or above the assay cut-point can just be considered "putative positive" for the presence of BAbs.
- The confirmation of true positives among the putative positive samples requires the demonstration of specific binding to the drug:
 - A putative positive sample is re-tested in the presence and absence of an excess of drug.
 - The specificity cut point is defined as the percent inhibition at or above which a sample is considered as "confirmed positive".

2nd Tier: Confirmatory Assay Specificity Cut-Point

- Spike all individual samples from the cut-point determination (preferable in the same experiment) with an excess amount of drug and calculate the percent inhibition per sample: 100 x [1-(spiked/unspiked)]
- Calculate the specificity cut-point from the percent inhibition of all samples: Upper bound of a one-sided 99.9 % prediction interval (parametric: mean + 3.09 x SD or non-parametric: 99.9th percentile)
- A real sample in study showing a higher % inhibition after spiking of drug than the specificity cut-point is defined as "confirmed positive"

3rd Tier: Titration

- Aim:
 - Retrieve quasi-quantitative information for confirmed positive samples
- Procedure:
 - Serial dilution of confirmed positive samples
 - Titer = -log dilution factor of the last dilution that tests positive

Challenges In Immunogenicity Testing Positive Control

- In contrast to PK assays the analyte is not available in purified form
- Serum from animals (e.g. goats) hyperimmunized with the drug is used as control instead
- This surrogate control substantially differs from the measured human anti-drug antibodies in respect to affinity and avidity
- Consequently no exact numbers (e.g. for sensitivity) can be reported for Immunogenicity assays (but numbers relative to the positive control)

34

Challenges in Immunogenicity Testing Drug Interference

- The presence of major amounts of drug interferes with the detection of anti-drug antibodies and leads to "false negatives"
- Solutions:
 - Wash-Out Samples
 - Draw blood samples for the detection of antidrug antibodies several days/weeks after the last treatment (5-6 x t1/2)
 - Acid dissociation of the immunecomplexes

Wash-Out Samples

- Draw blood samples for the detection of anti-drug antibodies several days/weeks after the last treatment (5-6 x t_{1/2})
- Problem: A transient immune response might not be detected in wash-out samples => acid dissociation assays might be needed

ACE Acid Dissociation Assay

THANK YOU !