Characterization and Quantitation of Aggregates and Particles in Inteferon- β Products

Particles as Adjuvants

Jim Barnard, Ted Randolph and John Carpenter

University of Colorado Center for Pharmaceutical Biotechnology

Acknowledgments

Dr. Wim Jiskoot

Jay Yang and Dr. John Philo (AUC)

Ken Babcock (Affinity Biosensor)

Duncan Griffiths (Nanosight)

Neutralizing antibody (NAb): Summary of Clinical Data for IFN-β Products

Betaseron

27.8 - 47% NAb positive

(summary of 6 studies)

Rebif

5.3 - 35% NAb positive

(summary of 6 studies)

Avonex

2 - 7.5% **NAb** positive

(summary of 6 studies)

Immunogencity of interferon beta: differences among producs. Bertolotto A. J Neurol 2004

Frequency and Magnitude of Interferon θ Neutralizing Antibodies in the Evaluation of Interferon θ Immunogencity in Patients with Multiple Sclerosis. Grossberg S. Journal of Interferon & Cytokine Research 2011.

Dosage Form/Formulation of Ifn-β Products Tested

- Betaseron(\$2,976 /14 vials) and Extavia (\$3,000/15 vials)
 - Lyophilized powder, 15mg mannitol, 15 mg human serum albumin (HSA), 0.3 mg interferon beta 1b.
 Stored at room temperature.
 - Reconstituted with 1.2mL of 0.54% NaCl from a prefilled syringe.
 Use within 3 hours, store at 5° C post reconstitution.
 - Extavia is produced at the same manufacturing site as Betaseron.

Rebif (\$2,982 /12 syringes)

Prefilled syringe (0.5mL), 54.6 mg/mL mannitol, 0.8mg/mL sodium acetate, 8mg/mL HSA, 44 μg interferon beta 1a.

Avonex (\$2,954 /4 syringes)

Prefilled syringe (0.5mL), 1.58 mg/mL sodium acetate, 0.5mg/mL acetic acid, 0.05 mg/mL polysorbate 20, 31.6 mg/mL arginine, pH
 4.8, 30 μg interferon beta 1a.

Analytical Methods for Characterizing and Quantifying Aggregates and Particles

Almost no IFN monomer in Betaseron and Extavia Betaseron Extavia

SEC and SDS-PAGE Results

Analytical Ultracentrifugation

Product	% Aggregate SEC (pH 7 mobile phase) $(n = 3, \pm SD)$	% Aggregate AUC (formulation)		
Betaseron	14.9 ± 0.3%	14.6%		
Extavia	14.5 \pm 0.5%	15.5%		
Rebif	8.6 ± 0.1%	10.3%		
Avonex	0 ± 0%	5.5%		

Filtration Prior to Performing SEC

- 1. When Extavia is filtered with a 0.02µm filter prior to performing SEC, high molecular weight species eluting in the void volume are greatly reduced.
- 2. This result, in addition to the AUC results, indicates that these aggregates are present in the vial & not induced by SEC method.

Particle Counts by Microflow Imaging (>1μm)

Particle Counts by Microflow Imaging (>1μm)

Particle Morphology

100 µm

Affinity Biosensor (0.3-2µm) particles

Protein signal

Nanosight (~70-450 nm) particles

Total Particles/mL

Centrifugation/SDS-PAGE of Pellet

- 1. 400μL of sample centrifuged @ 138,000g for 30 minutes.
- 2. Pellet solubilized in reducing SDS buffer.

	Betaseron		Extavia		Rebif		Avonex	
Identity	Pellet	Peak 1 Fraction	Pellet	Peak 1 Fraction	Pellet	Peak 1 Fraction	Pellet	Peak 1 Fraction
%Aggregate	11.4	0	9.7	0	14.8	0	0	0
%HSA	50.3	32.9	47.9	42.3	79.6	53.0	0	0
%Fragment	7.0	13.4	7.7	14.6	1.0	47.0	0	0
%IFN	31.3	53.7	34.7	43.1	4.6	0	100	100

Conclusions from IFN- \(\beta \) Analyses

1. There is a correlation between aggregate/particle content and clinical rates of immunogenicity for the IFN-β products.

2. Of course, many other factors could also play important roles in adverse immunogenicity.

3. The analytical findings could have implications for follow-on biologics and for future regulatory expectations regarding particulate content.

Should a biosimilar have the same high aggregate and particle content as the innovator product or should it meet current product quality expectations?

Particles Break Tolerance to mGH: An Adjuvant Effect

Thanks to Amy Rosenberg

Aggs (dose)

JOURNAL OF PHARMACEUTICAL SCIENCES, VOL. 100, NO. 11, NOVEMBER 2011

Particles as adjuvants

 Removing subvisible particles eliminates immunogenicity of "100%" monomer MGH.

Numerous studies from 60's and 70's in human patients and in animals documented that removal of aggregates/particles eliminated immunogenicity and sometimes invoked tolerance to foreign proteins.

Particles as adjuvants

 Typically studies compared unprocessed sample vs. those in which aggregates/particles (often a trace amount of the product mass) were removed by ultracentrifugation or filtration.

 In other studies "cleaned up" samples were spiked with trace amounts of aggregates, which stimulated immunogenicity.

Particles as Adjuvants Equine IgG in Humans

- Anti human lymphocyte IgG produced in horses
- Administration to organ transplant patients resulted in immune response and rapid clearance of the IgG
- Treatment of patients with equine IgG in which aggregates/particles removed by ultracentrifugation (134,500 x g for 1hr) resulted in no immune response and actually made the patients tolerant to foreign IgG

Wesker et al., 1970, *J. Clin. Invest.* 49:1589

Particles as adjuvants: Testing with current therapeutic protein products

- Purchase therapeutic protein product from pharmacy
- Characterize and quantify aggregates and particles
- As needed, develop and confirm assay protocols (e.g., SEC method)
- Develop ultracentrifugation or filtration protocol to remove aggregates and/or particles.
- In mice, compare immunogenicity of untreated product with that treated to reduce aggregates/particles
- Present and publish results
- Repeat with the next therapeutic protein product

Conclusions

- Particles serve as adjuvants and promote immunogenicity
- Protein particle formation is ubiquitous in the production, shipping, storage and delivery of therapeutic proteins.
- Subvisible particles are critical species on protein aggregation pathway and are in all therapeutic protein products.
- How do we minimize patient exposure to particles? (e.g., could filters be developed for subcutaneous injection?)

Invitation from Journal of Pharmaceutical Sciences

- Please consider writing Commentary or Review for the *Journal*
- For example, Commentary on timely issue for the industry
- For example, Review with critical assessment of important area
- Topics and submission dates are open.
- Please contact me: john.carpenter@ucdenver.edu

2012 Workshop on Protein Aggregation and Immunogenicity

Presented by
University of Colorado Center for
Pharmaceutical Biotechnology

AAPS

US FDA

July 10-12, 2012

Breckenridge, Colorado