

Immunogenicity of anti TNF biopharmaceuticals in rheumatic diseases: the causes and the consequences

Denis Mulleman Department of Rheumatology University of Tours, France

Disclosures

- Grant for research: Abbott
- Consultancies: Schering Plough
- Payment for lectures: UCB, MSD, Amgen, Pfizer, Roche
- Co-investigator for clinical trials: Abbott, Roche, BMS, Pfizer, UCB, Schering-Plough

Agenda

- 1. Dose response relationship
- 2. Causes of immunisation
- 3. Immunisation to monoclonals clinical and pharmacological consequences & Factors that can help clinician to reduce immunisation: methotrexate and dosing regimen
- 4. Practical use of drug and ADA measurements.

Agenda

- 1. Dose response relationship
- 2. Causes of immunisation
- 3. Immunisation to monoclonals clinical and pharmacological consequences & Factors that can help clinician to reduce immunisation: methotrexate and dosing regimen
- 4. Practical use of drug and ADA measurements.

Even after careful drug development, an interindividual variability is response is observed

Dose-response relationship

7

Concentration-response relationship

Jamnitski A et al. Ann Rheum Dis 2011

Dose-response relationship

Pharmacokinetic variability

Even after careful drug development, an interindividual variability is response is observed

LabEx Tours Montpellier

Dose-

dependent adverse effects Drug **Expected** response standard dose Insufficient or no response 11 ve

One of the tools of clinical pharmacology is the measurement of blood concentrations of treated patients

> Insufficient or no response 12

Pharmacokinetic Modelling

Vd : Diribution volume CL : clearance k_{12} , k_{21} : distribution constants $T^{1/2}$ - β : Elimination half-life

 $dC_{C}/dt = -(CL/Vd) \cdot C_{C} - k_{12} \cdot C_{C} + k_{21} \cdot C_{P}$ $dC_{P}/dt = k_{12} \cdot C_{C} - k_{21} \cdot C_{P}$ $C_{C}(0) = D/Vd \qquad C_{P}(0) = 0$

Agenda

- 1. Dose response relationship
- 2. Causes of immunisation
- 3. Immunisation to monoclonals clinical and pharmacological consequences & Factors that can help clinician to reduce immunisation: methotrexate and dosing regimen
- 4. Practical use of drug and ADA measurements.

M

Agenda

- 1. Dose response relationship
- 2. Causes of immunisation
- Immunisation to monoclonals clinical and pharmacological consequences & Factors that can help clinician to reduce immunisation: methotrexate and dosing regimen
- 4. Practical use of drug and ADA measurements.

Two conditions

- Rheumatoid Arthritis
 - Auto immune disease
 - Peripheral joints
 - Bone/destruction destruction

Tours Montpell

- Spondylarthropathies
 - Inflammatory disease
 - Axial>> peripheral joints
 - Ankylosing (axial)

- DMARDS ++++ DMARDS + (peripheral) (methotrexate) (Methotrexate) Anti TNF-alpha

« ATI* » cohort

Ducourau et al. Arthritis Research & Therapy 2011, 13:R105 http://arthritis-research.com/content/13/3/R105

RESEARCH ARTICLE

Open Access

Antibodies toward infliximab are associated with low infliximab concentration at treatment initiation and poor infliximab maintenance in rheumatic diseases

Emilie Ducourau^{1,2†}, Denis Mulleman^{1,2*†}, Gilles Paintaud^{1,3}, Delphine Chu Miow Lin^{1,2}, Francine Lauféron^{1,2}, David Ternant^{1,3}, Hervé Watier^{1,4} and Philippe Goupille^{1,2}

*Antibodies toward infliximab²³

ATI cohort

- Retrospective analysis (december 2005january 2009)
- RA and SpA
- Trough serum infliximab concentration and ATI at each visit

Results

- 108 patients: 17 RA and 91 SpA
- ATI detectable in 21 patients during followup
 - -7(41%) with RA,
 - 14 (15%) with SpA
- Median time for ATI detection was 3.7 months

Infusion reaction to infliximab

- 12 patients
 - Rashes
 - Hyperthermia
 - Chills
 - Angio-oedema
 - Tachycardia
- 11/12 ATI positive
 - 4 required iv corticosteroids and antihistamine
 - 2 required antihistamine
 - 4 no treatment required
 - 1 Guillain-Barré syndrome

Ducourau et al. Arthritis Res Ther 2011

27

Infusion reaction to infliximab

Cause of discontinuation	ATI _{pos} (<i>n</i> = 18)	ATI _{neg} (<i>n</i> = 41)
Treatment failure		
Primary failure	2 (11%)	23 (56%)
Secondary failure	3 (17%)	8 (20%)
Infusion reactions	9 (50%)	1 (2%)
Adverse events	1 (5.5%)	6 (15%)
Other	1 (5.5%)	2 (5%)
Lost to follow-up	2 (11%)	1 (2%)

Ducourau et al. Arthritis Res Ther 2011

Immunogenicity of infliximab in Spondylarthropathies

	SpA (n = 91)		
MTX treatment	ATI _{pos}	ATI _{neg}	P value
MTX+	0	25	
MTX-	14	52	0.03

Ducourau E. Arthritis Res Ther 2011

THERAPEUTIC EFFICACY OF MULTIPLE INTRAVENOUS INFUSIONS OF ANTI–TUMOR NECROSIS FACTOR α MONOCLONAL ANTIBODY COMBINED WITH LOW-DOSE WEEKLY METHOTREXATE IN RHEUMATOID ARTHRITIS

RAVINDER N. MAINI, FERDINAND C. BREEDVELD, JOACHIM R. KALDEN, JOSEF S. SMOLEN, DIANA DAVIS, JOHN D. MACFARLANE, CHRISTIAN ANTONI, BURKHARD LEEB, MICHAEL J. ELLIOTT, JAMES N. WOODY, THOMAS F. SCHAIBLE, and MARC FELDMANN

ATI In RA patients receiving infliximab at 3 mg/Kg

мтх -21,0%

29 Maini RM et al. AR 1998

Ducourau E et al. Arthritis Res Ther 2011

30

Bendtzen et al. Arthritis Rheum 2006

31

FAKIR* study

- Prospective study (Western France University Hospitals Network)
- RA patients treated with infliximab for at least 14 weeks

MADE Tours Montpeller * Pharmacokinetics of Infliximab in Rheumatoid Arthritis (NCT00840957)

Results

- 84 patients
- 412 sera available.
- ATI were detected in the pre-infusion serum of 3 patients
- Two-compartment model

Results

 CL was dramatically increased (5 fold) in ATI+ patients as compared to ATIpatients

Agenda

- 1. Dose response relationship
- 2. Causes of immunisation
- Immunisation to monoclonals clinical and pharmacological consequences & Factors that can help clinician to reduce immunisation: methotrexate and dosing regimen
- 4. Practical use of drug and ADA measurements.

Situation 1 Inadequate disease control

 No initial treatment response, secondary loss of effectiveness, or inadequate effectiveness: switch to another biologic agent or increase the dosage?

Disease control

		Optimal	Acceptable	Inadequate	
Serum level	High	Dose reduction	Dose unchanged	Switch	
	Target range	Dose unchanged	Consider increasing the dose **		
	Low	Dose unchanged §	Increase the dose #		

Fig. 1. Decision algorithm for the rapeutic drug monitoring in patients receiving TNF- α antagonist the rapy.

Disease control

		Optimal	Acceptable	Inadequate
Serum level	High	Dose reduction	Dose unchanged	Switch
	Target range	Dose unchanged	Consider increasing the dose #*	
	Low	Dose unchanged §	Increase the dose #	

Fig. 1. Decision algorithm for therapeutic drug monitoring in patients receiving TNF-α antagonist therapy.

Disease control

Fig. 1. Decision algorithm for therapeutic drug monitoring in patients receiving TNF-α antagonist therapy.

Situation 2

Clinical adverse drug reaction

 Continue the same drug or switch to another TNF-, antagonist?

LabEx Tours Montpellier

Mulleman et al. Joint Bone Spine in press

Situation 3 Optimal disease control

Good treatment response: should the dosage be decreased??

43

Fig. 1. Decision algorithm for therapeutic drug monitoring in patients receiving TNF-α antagonist therapy.

Mulleman et al. Joint Bone Spine in press

Disease control

Fig. 1. Decision algorithm for therapeutic drug monitoring in patients receiving TNF-α antagonist therapy.

45

Fig. 1. Decision algorithm for therapeutic drug monitoring in patients receiving TNF-α antagonist therapy.

Mulleman et al. Joint Bone Spine in press

Disease control

Summary

Gilles Paintaud

David Ternant

Philippe Goupille

Denis Mulleman

Hervé Watier

Emilie Ducourau

Thank you for your attention!

mulleman@univ-tours.fr http://mabimprove.univ-tours.fr