Establishment of a Cell-Based Assay Specific for a Growth Factor that Shares a Common Receptor Chain and Overlapping Biological Activities with Other Cytokines and Growth Factors

Michael G Tovey,

INSERM Director of Research, Laboratory of Biotechnology & Applied Pharmacology, ENS CACHAN <u>tovey@vjf.cnrs.fr</u>

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)

- GM-CSF is a hematopoietic growth factor that plays a central role in in the generation of neutrophils, macrophages, and DCs
- GM-CSF acts together with IL-3 and IL-5 to regulate the survival proliferation, differentiation, and functional activation of hematopoietic cells
- GM-CSF also regulates its own activity by via the induction of CIS, a SOCS family member SH2-domain protein that inhibits Jak2/STAT5 phosphorylation & signaling.
- CIS and SOCS3 also regulate EPO induced Jak2/STAT5 signaling

Quantification of GM-CSF Activity

- Current methods for quantifying human GM-CSF activity, are bioassays based on the ability of GM-CSF to support the proliferation of cell lines such as TF-1, or UT-7, that require GM-CSF for their growth
- Due to overlapping biological activities, IL-3 or EPO, can also support the proliferation of these cells and act synergistically together with GM-CSF.
- M-CSF & IL-1 can also enhance GM-CSF dependent cell proliferation
- > TGF- β and IFN α , or IFN β , can antagonize this activity
- > IL-3 & IL-5 share a common receptor βc chain with GM-CSF
- Thus, proliferation based assays for GM-CSF are subject to non specific interference.

Development of a Cell-based Assay Specific for GM-CSF: Strategy

- Use a cell line that possesses functional GM-CSF receptors, but does *not* require GM-CSF or other related growth factors for proliferation
- U937 cells possess functional GM-CSF receptors but not express functional EPO receptors
- U937 cells do not require GM-CSF, EPO or other related growth factors for proliferation
- Transfect U937 cells with a GM-CSF responsive reportergene construct

Reporter-Gene Assay: Construction

Intron Human β -globine

However,

GM-CSF, IL-3, & IL-5 share a common receptor βc chain

GM-CSF Receptor

- GM-CSF binds to a heterodimeric receptor comprised of a GM-CSF specific α subunit and a common receptor βc chain that is shared with IL-3 & IL-5
- GM-CSF receptor does not possess intrinsic tyrosine kinase activity; associates with Jak2 required for βc transphosphorylation, initiation of signaling, & biological activity
- Receptors for GM-CSF, IL-3, & IL-5 are expressed at very low levels (100-1,000 receptors/cell)
- > GM-CSF, IL-3, & IL-5 each bind with low affinity to their specific R α chain (Kd = 0.2 100 nM)
- In the presence of the βc receptor chain each cytokine binds with high affinity (Kd = 100 pM) resulting in dimerization of both sub-units and receptor activation

Development of a Cell-based Assay Specific for GM-CSF: Strategy

- Overexpress the GMRα, GM-CSF ligand-specific binding subunit, of the human GM-CSF receptor
- Hypothesis, GMRα receptor chain will compete with IL-3 or IL-5 specific binding sub-units for the pool of the βc signaling receptor sub-unit common to the GM-CSF, IL-3, and IL-5 heterodimeric receptors.

GM-CSF Receptor Structure and Signal Transduction

GM-CSF Gene Reporter Assay (FireFly Luciferase)

STAT5 Consensus Sequence:

STAT5 con. Ax4

A / TT / A \

STAT5 con. Bx6

GAGGCTCTGATTTCCGGGAAACTGATTCCCGGAATACGTTTTCCGGGAATACGTTTCCGGGAAACGTATTCCGGGAAAACTGATT CCGGGAAATGATCTGTTAG

STAT5 con. Cx6

GATTTCTAGGAATTCttctcagaaGAATTCttctgagaaGAATTCttctcagaaGAATTCttctgagaaGAATTCttctcagaaGAATTCAAATCG

STAT5 con. Dx4

GATTTCTAGGAATTCAAATCGGATCTAGATTTCTAGGAATTCAAATCGGATCTAGGATTTCAAGATTCAAATCGGATCT AGATTTCTAGGAATTCAAATCG

STAT 5 Reporter Gene Constructs – Firefly luciferase A, B, C or D Transcient transfection in U937 cells

STAT5 Reporter Gene – Firefly luciferase (C or D) relative to Renilla luciferase expression

Effect of rhEPO and rhIFN_γ on **STAT5** – luciferase (**C** or **D**) Reporter Gene *Transcient transfection in U937 cells*

Analysis of Clones Transfected with the US5-Luc Construct

Selection of stable clones transfected by **STAT5**-luc **C** in U937 cell line

Firefly Luciferase induction in U937/STAT5-luc stable cell line

Cell number optimisation for the GM-CSF assay Stimulation with 200ng/ml rhGM-CSF (Gibco®)

GM-CSF Gene Reporter Assay (FireFly /

r.crinaj

Double transcient transfection STAT5-luc (C or D) and pCMV-GM-CSF-R α in U937 cells

Firefly Luciferase induction in the U937 cell line *transciently tranfected* with STAT5-luc and GM-CSF-R α treated with GM-CSF, IL-3 or IL-5

STAT5-luc STAT5-luc + GM-CSF-Ralpha

Analysis of US5-Luc Clones Expressing Renilla Luciferase and the GM-CSFR α Receptor Chain

Analysis of RUS5-Luc clones Expressing Renilla Luciferase and GM-CSF α Receptor Chain

GM-CSF Gene Reporter Assay (FireFly /

r.crinaj

Transient Cotransfection of U937 Cells

Normalized Reporter Gene Assay for GM-CSF

- Unexpectedly, constitutive expression of Renilla luciferase is influenced (2x) by STAT5 activation in response to GM-CSF treatment
- Consequence effective dynamic range of assay reduced
- Mechanism unclear, no Stat5 recognition sequences in promoter construct
- Solution change promoter use SV40 constitutive promoter & Herpes simplex TK promoter
- Use humanized Gaussia luciferase gene instead of Renilla luciferase

GM-CSF Induced FL Expression Normalized Relative to Gaussia Expression (4 H Induction)

GM-CSF Induced FL Expression Normalized Relative to Gaussia Expression (16 H Induction)

Relationship Between Drug Induced FL Expression and Cell Number

Response of Reporter Cells to Serum Matrix Effects

Stability Studies: Sensitivity

Time (Hrs)	Passage #	EC50 (pg/ml)	LLOQ (pg/ml)
4	10	40	10
4	20	80	20
4	40	20	5
18	10	400	200
18	20	400	200
18	40	200	100

Stability Studies: Proliferation

Passage #	Doubling Time (Hrs)	Max Cell Density (x10 ⁶ /ml)
4	27	1.0
10	25	0.95
20	24	1.2
40	24	1.1

Conclusions - I

- A cell-based assay specific for a growth factor can be established by the use of a cell-line that does not require the growth factor or other related grow factors for proliferation
- The cell does, however, contain a functional receptor/signal transduction system for the growth factor of interest
- The assay can be rendered specific by over-expression of a growth factor specific binding receptor sub-unit

Conclusions - II

When a growth factor signals through multiple pathways (MAPK, NFkB, STAT₁₋₅ etc) it may be more useful to reconstitute a *complete* receptor-signaling transduction system in a cell that does not respond to the cytokine of interest. Reconstitution of a Functional Cytokine Signaling Pathway in Human U937 cells

Reconstitution of a Functional Cytokine Signaling Pathway in Human HEK cells

Conclusions - III

Reconstitution of a cellular receptor-signal transduction system in a cell that does not respond to the cytokine or growth factor of interest is a powerful tool for the establishment of Specific cell-based assays for the quantification of the activity and neutralizing antibody response to therapeutic proteins

www.coralgablessymposia.org

coral gables symposium 2012

IMMUNOGENICITY OF BIOPHARMACEUTICALS: SHAPING THE FUTURE MIAMI, APRIL 18-21, 2012

Gables Symposium 2012 provides a unique forum for thought leaders to address the principal concerns regarding the immunogenicity of biopharmaceuticals; in their development, regulation, and clinical use.

www.coralgablessymposia.org

Scientific Organizing Committee

- Dr. Michael Tovey, Chair Dr. Shalini Gupta, Amgen Dr. Susan Kirshner, FDA Dr. Daniel Kramer, Merck Serono
- Dr. Robin Thorpe, NIBSC

Speakers

Claudia Berger, Ph.D.	Daniel Kramer, Ph. D.
Antonio Bertolotto, MD	David M. Lansky, Ph.D.
Laurent Cocea, Ph.D.	Enrico Maggi, M.D.,
Jörgen Dahlström, Ph.D.	Daniel T. Mytych, Ph.D
Florian Deisenhammer, MD, M.Sc.	Andrew Pachner, M.D.,
Deborah Finco, Ph.D.	Zuben Sauna, Ph.D.,
Francesca Gilli, Ph.D.	Huub Schellekens, M.D.,
Sidney E. Grossberg, M.D.,	Steven J. Swanson, Ph.D.
Shalini Gupta, Ph.D.	Robin Thorpe, Ph.D.
Hans-Peter Hartung, M.D.,	Michael Tovey, Ph.D.
Susan Kirshner, Ph.D.	Eric Wakshull, Ph.D.
Eugen Koren, Ph. D.	Bonnie Wu, Ph.D.,