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Outline

Short intro

® Aggregate characterisation during candidate selection and
~ development

® Case Study: Candidate selection

.« Process flow

- Feedback loop to ensure a inherently developable candidate is chosen for
development

® Case Study: Aggregation understanding during development
. Aggregation understanding by forced degradation studies

- Increase in aggregates in a manufacturing batch and linking back to FDS

o Not included: formulaton or \\/( // /D
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Introduction to aggregates and biopharms

® Aggregates are linked to immunogenicity

® Biopharma companies pro-actively aim to minimise the aggregate
 levels therefore minimising immunogenicity

- Selecting candidates early with low inherent aggregation propensities

- Developing a manufacturing process which reduces aggregates

- Developing formulations which are unfavourable towards aggregation

- Mapping out aggregation pathways and develop understanding of
aggregates
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Lifecycle management

Development .
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Aggregation propensity minimisation during

candidate selection

@ Case study: Aggregation screening informs candidate selection

Candidate Development :
J' Selection IL Phase I-IV J
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Candidate selection

@ Many candidates against a target are evaluated by various
 developability criteria

@ Biophysical properties are evaluated early in the process to test for
inherent aggregation propensity

® This occurs in tandem with biochemical screening
- Aggregation, deamidation, oxidation, etc.

® This allows for re-engineering

Number of samples
—
Discovery B Informatics g . Biochem
. . HTP T, Candidates /Biophys
Acquisition Biacore Screen

Re-engineer
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Bioinformatics during candidate selection

Bioinformatics plays an increasingly important role in discovery and
candidate selection.

« Basic parameters

- MW, chemical formulae, pl, exctinction coefficient

Homology modelling

Deamidation prediction

T,, prediction

Aggregation prediction

Secondary and tertiary structure prediction

Solvent accessibility

Disulfide connectivity
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Aggregation by agitation: inherent properties vs.

formulation

25mM sodium acetate/90mM sodium chloride, pH 5
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Vortexing 25°C 1400rpm,
Nephelometry at 595 nm

Stability at pH5: B<A<D<C

Stability at pH6: A<B<D<C

Distinct differences between
molecules.



® Zeta potential = molecular charge in standard buffer (10mM NaPO,).

® Zero lower pH than pl

® Can increase tendency to aggregate if molecular charge approaches

.....Zeta potential (mV)
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Effect of buffers on aggregation by vortexing

= ZP=0 at pH5.3
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@ 10mM phosphate (zeta conditions) or acetate pH5 (Ac)
@ In 10mM Na phosphate, fastest initial aggregation rate at pH closest to Zeta 0

® Greater propensity to aggregate in 115mM (acetate) buffer, pH 5, than 10mM Na
phosphate buffer pH 5.69.
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Melting point / start of melting as an indicator of
stability

® DSC - calorimetry of unfolding induced by heating
® IgG4's melt at lower temp (more unstable) than IgG1, due to Fc (CH2)
® Overall stability includes Fab’ — IgG A and B worse than D

Tm1:1gG4 CH2 Tm2: Fab’, CH3
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Formulation strategy to minimise aggregation

® Commonly aggregation is partially controlled by the addition of
~excipients to the final formulation

® Low concentrations of surfactant (common excipient) inhibit
. denaturation and aggregation at air-liquid interface

® Aggregation still has to be controlled in the manufacturing process
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Summary for candidate selection

® Molecular charge and pH:

« Choose buffer pH and type to avoid zero molecular charge

« Select/engineer molecule pI that allows required formulation pH

® Molecular stability: in given conditions, higher Tm = less aggregation

tendency
« Select/engineer higher Tm

- Adopt more stable format, e.g. IgG1 or Fab’-PEG

® Combinations of stresses may exacerbate aggregation

- Avoid combinations e.g. zero molecular charge and agitation

® Protect final DS formulation with surfactant
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Aggregation characterisation in Development

@ Case study: a change in aggregation profile during manufacturing in
~amAb
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Incorporating Characterisation

into the Product Lifecycle

Researich

Protein engineering <+-———-—-—-—=——-—=——-————————————————

Stress study
Candidate selection

: Method development & Formulation
Development

Phase |

and FDS Studies

GMP DS Process 1

- Characterisation S & investigations

GMP D ocess 2

~ Characterisation S & investigations
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Observation of HMW species

@ Initial observation from batch release data
« Increased level of HMW species
« Question 1: Are these new species?
~» Question 2: Do we know the pathway?
® Investigation undertaken (purification & characterisation)
. Semi-prep SE-HPLC
e SDS-PAGE, native PAGE, DLS, SEC-MALLS, MALDI-MS
® Results
® Compare with learnings from FDS
. Question 3: could FDS data have prevented the investigation?

® Outcome
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Comparison of Batch SE-HPLC

Profiles (Drug Substance)
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Non-Reduced SDS-PAGE (3-8% Tris-Acetate) -

Denaturing conditions

~ 1200 kDa
~ 900 kDa

Extrapolated

~ 600 kDa

~ 330 kDa )
~ 290 kDa } Dimer

~160 kDa Monomer

Non-covalently bound species
will dissociate under
denaturing conditions
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Lanes 4 & 7: HMW 2 species are predominately (~80%) non-covalently bound



Clear Native Gel (3-8% Tris-Acetate) — reserves

integrity of non-covalent species
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SEC_ profiles
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- Lane 7 & 10: Confirms HMW 1 are mainly a dimeric species

r ] - Lanes 6 & 9: confirms HMW 2 species is a mixture of oligomers (di-,tetra-, hexamer...)
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SEC-MALLS Data

® SEC with multi-angle laser light-scattering (MALLS), viscometer and refractive
. index detectors

® Provides MW, hydrodynamic radii, intrinsic viscosity and % aggregates
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é Estimated average MW of HMW 2 > 1,500,000 Da (limit of working range of

SEC column)
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Dynamic Light Scattering

@ Measures intensity of laser light that is scattered from particles
® Larger particles scatter light >> smaller particles
@ Provides an estimation of diameter size of particles

Se Distribution by Intensity
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20
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® Confirms that HMW 1 are a dimeric species; HMW 2 data suggest that

raverage MW > decamer
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Mass Spectrometry: Cross-linking aggregates

@ Reference
~ standard
sample

® HMW
~ purified
sample
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Stability and clinical data

% monomer by SEC - stability at 5°C

@ Batch 2 with increased HMW?2

- within specification for aggregates at

QSS_W
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- within specification for aggregates at e
end of shelf-life s

R 95.8

Lower specification limit

)

» On stability and accelerated stability
studies: Batch 1, Batch 2
« -70°C, 5°C and 25°C

- batch 2 did not form aggregates at a
faster rate than other batches. % monomer by SEC - accelerated stability at 25°C
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HMW 1 and 2: Characterisation Summary

@ HMW 1:

- Data consistent for a dimer (MS, AUC, SEC-MALLS ,SDS and native PAGE,
and DLS)

- About half of the dimer species is made from non-covalent bonds
« 97% of species was reducible to Heavy and Light chain species
® HMW 2:

« Analysed by SDS and native PAGE, SEC-MALLS, MS and DLS

« Predominantly (80%) non-covalently linked species

- Fully reducible to Heavy and Light chain species

« Mixture of oligomers with MW up to decamers

@ Q1l: Are they the same species?

® Al: Same species present in all batches but levels vary (0.02% to

+ +0-33% for HMW 2)
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Mixture of
oligomers
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Development case study summary
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Increase of HMW2 at time of release

HMW1 and HMW2 were purified and characterised by an array of
thechniques.

« HMW1 represents dimer

« HMW2 represents oligomers up to decamer

An initial FDS screen was performed to identify conditions which
mimick HMW?2

Identification of simple and informative methods - clear native PAGE
(Silver/Sypro Ruby)

Confirmation of identified stress conditions using orthogonal
techniques e.g. native gels and SE-HPLC



Development case study summary

Q2: Can we determine the degradation pathway?

@ A2: Answer: photostability appears to mimic closely the observed
. aggregation pattern. However, aggregation are difficult pathways and to truly
understand pathways considerably work has to be performed.

® Q3: Could we have used the FDS samples to prevent an investigation?

@ A3: This depends on confidence levels
.« The FDS gave 5 different options.

- Analysing the sample using the same methods allowed better understanding. Thus in
this instance the investigation was still necessary

- Experience: number of studies, platform technology, sequence predictions etc

- Aggregation is a complex pathway - often overlap between Photostability, agitation
and oxidation....

F e
A4

27



Conclusions

® Candidate Selection

« Biophysics/biochemical screen early in project (including other factors: pH
stability, chemical stability, etc)

- Select / re-engineer candidate to improve — easier process development,
more stable product

« Characterisation informs process development and formulation

- Don’t diagnose problem, avoid it!

® Development
~ « Understand the process
« Have the tools to understand aggregation

- Perform stress studies early

- Investigations into abnormal events can make or break projects

&
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