

Detection of Immune Complex Formation in Non-Clinical Studies and Implications for Clinical Risk Assessment

Steven J Swanson, Ph.D.

Executive Director, Medical Sciences/Clinical Immunology swanson@amgen.com

Immune Complex Related Pathology

- Have been observed in non clinical studies
- Risk factors for acute effects include:
 - mAb therapeutics (due to their large MW)
 - IV administration (due to large amount of drug entering the circulation within a short time)

- Traditional assays have not met the need
- Variable results
- Lack of specificity
- Immune complexes comprise a diverse population and may have variable stability
- New methods are evolving

Hypersensitivity reactions (HSRs)

Inappropriate or damaging immune and inflammatory response that is harmful to the host

Reactions initiated by Ab and drug-ADA complexes are referred to as "Immediate" Hypersensitivity and manifest in minutes to hours after "antibody drug"

Types

- Type I Immediate type; IgE mediated
- Type II IgG or IgM antibody-mediated cell cytotoxicity (ADCC) or complement-mediated lysis of cells (CDC)
- Type III IgG mediated immune complex reactions resulting in formation, deposition and complement activation with local tissue destruction
- Type IV Delayed-type; Th cell mediated

Formation and clearance of immune complex

CICs are transferred from RBCs to liver macrophages

Saturated IC clearance or large complexes can contribute to pathology

Immune complexes and vasculitis

Non-Clinical Observation When Drug Was Cleared Between Doses

- NHPs administered multiple injections of IgG1/IgG2 human antibodies
- Not a Group effect; individual animals
- Effects noted a short period after dosing (minutes to ~2 days)
- In IV dosed groups (vs SC) at lower (eg 10-50 mg/kg) as opposed to higher doses (i.e., 300 mg/kg)
- Potential clinical findings post-dose:
 - Vomiting, difficulty breathing, weakness/lethargy, death
 - Prominent bleeding or bruising at injection site
 - Petechial hemorrhages
- Clinical pathology findings:
 - Activated platelets +/- change in platelet counts
 - Decreased neutrophils and monocytes
- Affected animal(s) had:
 - High ADAs
 - Below Quantifiable Limits (BQL) drug prior to next dose

NOTE: Example only, does not always occur

ADA/drug Ab complex complicates CI ADA detection and PKDM drug Ab detection

Reliability Factor:

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Immunoassay for huAb drug inducedimmune complexes in NHP

CIC Assay Standard Curve using 1:1 Positive Control

CIC Immunoassay Validation Parameter

- Sample with S/N > 3.35 = CIC Positive
- Sample dilution: 1:20 ; 1:400 and 1:8000
- Quantitation based on a 1:1 CIC standard
 - Dynamic range: 0.250-10 mcg/ml CIC
 - Precision : 25%
- Sensitivity: 142 ng/ml
- Quantifiable Limit: 250 ng/ml
- Drug tolerance @ QL: 1 mcg/ml lgG2

Dynamics of Detecting ADA & CIC in Presence of High Serum Drug levels

Note: These are representative data for demonstration purposes

Case Study 1: Immune Complex in Non-Human Primate

- Single animal presented on Day 23 of 28 day study with:
 - Lymphadenopathy
 - Inflammatory leukogram
 - Decreased serum drug concentrations
 - Early euthanasia
- Other differentials considered: Infectious (TB or atypical Mycobacteria, protozoal—T. cruzi), test-article related effect
- Additional data collected: ADA, CIC, special stains for infectious organisms
- WOE for immune complex-mediated etiology
 - No evidence of infection
 - Single animal affected
 - CIC detected when symptomatic, and decreasing drug concentrations
 - Histopathology
 - Chronic active inflammation aorta-coronary artery branch point
 - Pyogranulomatous lymphadenitis

Case Study 1 (IgG2 mAb): Alteration in PK Levels and Associated Pathology in an ADA Negative Animal

Case Study 2 (IgG2 mAb): Clinical and Anatomic Pathology Finding of an IC Mediated Hypersensitivity

Clinical signs:

- Decreased activity; decreased use of left hindlimb
- Ecchymosis/petechiation was observed on all 4 limbs

• Timing:

- Occurred 24 hrs after dose administration
- Occurred after 23rd dose (ie, late in dosing phase) in an individual animal

CI / TK:

- Binding ADAs observed D57; increasing levels of Abs at D113, D141, D156
- Positive immune complexes (CIC) on D156
- Decreased bioactivity (D57, D113) and serum concentration (D57 through D156)

Histopathology:

Multifocal vasculitis / thrombosis of small vessels in skin and GI serosa

Case Study 2: Data Evidence of Immune Complex Formation in Animal X

Day	Serum Concentration ¹		Bioactive Drug Level		Antibody Positive Animals in Group 4			Immune Complex Assay	
	Animal X	Grp 4 Mean	Animal X	Grp 4 Mean	Animal X	Animal Y	Animal Z	Animal X	Grp 2 - 4
	(µg/mL)		(µg/mL)		(Signal/Noise Ratio)			(µg/mL)	
57	172	934	149	945	9.08	Neg	Neg		
85	< 2	1010							
113	< 2	978	BQL	958	5739	1.17	Neg		
141	< 2	968			8046	1.32	1.48	Neg	
156	< 2				3077	Neg	Neg	> 32	
162		1040				1.43	1.56		Neg
183		982 ²		1061		1.51	1.45		

Blank squares indicate blood sample not collected ¹ Pre-dose, ² 7-d post-dose

- Clinical and pathologic changes consistent with immune complex secondary to ADA formation
- Consequences of IC formation were not a direct TArelated effect
 - ADA formation in NHP not clinically relevant
- There was no impact to either program
 - Did not impact the NOAEL or safety margins
 - No impact on timelines or clinical trials progress

"Triggers" for CIC Assay

- Unusual PK/PD/pathology findings in animals that test ADA negative (Case Study 1)
- Post-dose clinical signs (e.g. fainting, weakness, etc) or clinical/anatomic pathology findings in animals ADA+ on study (Case Study 2)
 - IV dosing
 - Predose (trough) drug low or BQL
 - Robust ADA
- To test the assertion that immune complexes are the cause of the pathology findings in ADA+ animals (Case Study 2)

Our challenge

- Determine why some human IgGs cause ADAmediated toxicity
 - Animals with IC-related effects are CIC+
 - Not all CIC+ animals have adverse events
- What is the role of route, dose, infusion rates, antibody vs antigen excess, molecule characteristics, etc.?
- How does CIC size correlate with adverse effects/ pathology?
- What does CIC composition tell us?
 - Detect C3b on CIC
 - Cyno IgG subclass
 - Other serum proteins

Conclusion

- A validated CIC assay provides direct evidence of circulating immune complexes (human IgG drugs/ cyno IgG ADAs)
- In Case Study 1, CIC results were critical in explaining the alteration in PK levels and associated pathology in an animal that was ADA negative by traditional methods
- In Case Study 2, CIC results supported the clinical and anatomic pathology findings of an immunecomplex mediated type III hypersensitivity reaction

- Clinical Immunology
 - Dan Mytych
 - Dohan Weeraratne
 - Jill Miller
 - Mike Moxness
 - Rocio Lopez
 - Naren Chirmule
- Comparative Biology & Safety Sciences
 - Nancy Everds
 - Katie Sprugel
 - Jeanine Bussiere
 - Jon Werner

