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Topics I

- Mixing distribution:
naive samples may contain both ADA+ and ADA-

- Mixed model:
multiple microtiter plates as random factor

- Challenge:
combination of both approaches to estimate a prediction interval
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The problem I

- First idea: Cut-point estimation is rather simple
A screening cutpoint (SCP) is defined for a N(µi ,�2) endpoint x in
m historical samples, as an one-sided prediction interval for k of n
future samples as:

SCP = uCP

k,n
pred = x + s ⇥ rk,n,m,1�↵/n

the quantile rk,n,m,1�↵/n can be estimated by the R-library
pred.intervals (Hothorn et al. (2009))
or even simpler r = z1�↵ = 1.6445
(uCPk,n

pred ... upper prediction limit as cutpoint)
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The problem II

- Second idea: Really simple?
I

m is rather small (e.g. m = 50)
to achieve acceptable correct model selection rates for:

1 normal or not
2 outlier or not (and which one)
3 variance homogeneity or not
4 homogeneity after normalization or not

in decision trees
e.g. Shankar et al. (2008), Kubiak et al. (2013)
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The problem III
I The assumption N(µi ,�2) is questionable:
log/normal?, homo/hetero variances?, unimodal/bimodal
distibution? (ADA+ and ADA- in naive sample possible)
ADA+ subjects shift SCP to larger values ) increase of f- rate

I The common design uses more than one plate:
1 > 96 samples needed
2 possibly spiked and un-spiked on a plate for simultaneous

specificity/confirmatory cut point determination
3 possibly males and females on the same plate
4 possibly positive controls on the same plate
5 secondary factors to consider (prediction!): analysts, instruments, days,...

AND: di↵erent hierarchies between these factors possible

I I.e. multiple assays with commonly di↵erent designs
I Normalization using NC is common- however this does not
necessarily result in near to zero variance components, i.e. mixed
model may be necessary

I Therefore SCP estimation may be complicated
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The problem IV

I Here we propose an approach:

F Assuming a bimodal distribution. Selecting the ADA- samples for SCP
estimation assuming a mixing distribution model

F SCP estimation in the mixed model, i.e. taking variability between runs
(or analyst/plates, or ...) into account.
May be to complicated for biologists:
i) need for simplification, ii) proposing an appropriate design

F Modeling variance heterogeneity
F Instead of simple method above, even new statistical methods must be

worked out, i.e.
I) mixing distribution with random factors and heterogeneous variances,
II) prediction intervals in mixed model

Making available: using R

6 / 25



ADA assay as binary diagnostic test I

- Binary diagnostic tests are wide-spread used in medicine
Similarity to ADA-assays:

I classifying new samples into + or -
I using a cutpoint for a continuous endpoint, so-called reference values
I sometimes without gold standard (idea: considering multiple tests)
I here even without true+ and true

� samples
I therefore, explicit quantification of the error rates is not possible
I but: a smaller cutpoint results in a lower false� rate
I immunogenicity assays belong to safety assessment and therefore

controlling the false

� is of primary importance

I therefore: smaller cutpoints should be preferred
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Method I: Prediction interval in the mixed model I

- Room for confusion:
the upper limits of all three type of intervals are defined similar
uSCP

general = x + s · quantile (see Hahn and Meeker (1991))
I but a Confidence interval contains the population mean with a

pre-specified confidence probability
I but a Tolerance interval contains a specified proportion of future

samples where the number of future samples needs not to be specified
I and a Prediction interval for k = 1 of n future samples is appropriate

(simplification for a single future observation is not necessary, but easy
to harmonize)

- A prediction interval for a simple one-way layout with a naive
variance estimate SD may be inappropriate

I samples are splitted over plates (paired design)
I even after normalization variance components between plates, analysts,

days, devices,... may be not zero
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Method I: Prediction interval in the mixed model II
- A) Prediction intervals for random e↵ects models are needed

- Extensions of Ho↵man and Berger (2011)
For example:

I
yij = µ+ ai + bj + ...

I
ai ⇠ N(0,�2

subject) variance between subjects, i = 1, ..., nsubject
I

bj ⇠ N(0,�2
plate) variance between plates, j = 1, ..., nplate

I ... further variance components analyzed during method validation

- An upper limit that contains a single future observation (from the
same population) with probability (1� ↵):

- µ̂+ t1�↵,dfS

q
V̂ (y⇤) + V̂ (µ̂) where

I
V̂ (y⇤) variance of a new observation y

⇤: the sum of variance
components V̂ (y⇤) = �̂2

subject + �̂2
plate + ...

I
V̂ (µ̂) variance of the estimated general mean, µ̂,
V̂ (µ̂) = �̂2

subject/nsubject + �̂2
plate/nplate + ...

I the sum of both can be estimated as a weighted sum of the mean
squares, MS , of an ANOVA table,
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Method I: Prediction interval in the mixed model III
I the weights depend on the particular experimental design
I

t1�↵,dfS is the (1� ↵) t-quantile with Satterthwaite (1941)-df

- For practical application, it is crucial:
I to use standard experimental designs for ANOVA, with proper

randomization
I to correctly describe nesting or crossing of factors (subject, plate, ...)

in the experiment

- R functions available for:
I one factor
I two factor hierarchical design
I two factor crossed design with (and without) replications
I three factors, with two crossed, third nested
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Method I: Prediction interval in the mixed model IV

- B) Checking normality assumption in the mixed e↵ects model

- Naive (realistic question): errors normal or log-normal distributed?
1 Likelihood ratio test for Box-Cox � (Gurka et al. (2007))

F Scaled Box-Cox-transformation:
wi = (y�

i � 1)/(�ỹ��1) if � 6= 0
wi = ỹ log(yi ) if � = 0

F Notice: � = 1 ) normal distribution, � = 0 ) log-normal d.
F Fit models by maximum likelihood (not REML)
F Estimate the best �̂ (ML-estimator)
F Likelihood ratio tests:
F Test deviation from normality:

T = �2(L(w ,� = 1)� L(w ,� = �̂)) ⇠ �2
df=1

F Test deviation from lognormality:
T = �2(L(w ,� = 0)� L(w ,� = �̂)) ⇠ �2

df=1
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Method I: Prediction interval in the mixed model V

2 Visual assessment: Q-Q-plots and residual plots for random e↵ects
3 An example: 18 runs; samples, considered nested in runs; techn.

replicates within sample & run
4 estimated Box-Cox parameter: �̂ = �0.9, i.e. even more skewed than

lognormal

H0 HA TLRT Pr(> �df=1)

Normal (� = 1) Dev. from Normal 251.44 < 0.0001
Lognormal (� = 0) Dev. from Lognormal 52.05 < 0.0001

Log-transformation is the better choice, although not perfect
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Method I: Prediction interval in the mixed model VI
5 Log-normal transformed data
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Method I: Prediction interval in the mixed model VII
6 Original data (no transformation)

7 I.e. even to check whether normal or log-normal is not is simple job in
the mixed model. Notice, the consequences on the cutpoint can be
drastic
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Method II: Normalization I

- Each plate contains NC samples

- Normalization against NC is common:

1 normal distribution zij = yij � ȳi,j=NC (for i plates)
2 log-normal distribution zij = wij � w̄i,j=NC , (wij = log(yij))
3 possible: zij = yij/ȳi,j=NC or zij = yij �median(yi,j=NC ) (not here)
4 lack-of-fit test (normal vs. log-normal): too low power for m = 50 (and

complicated in hierarchical designs Xu et al. (2013))
5 therefore parallel estimation of SCPnormal , SCP log�normal and testing

Box-Cox parameter (see above)
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Method II: Normalization II

- After normalization variances between plates (analysts, devices, ...)
may tend to zero or not Zhang et al. (2013)

- But no powerful test on no variances exists in the mixed model
(Wood (2013))

- I.e. we need ) prediction interval estimation in the mixed model:
whether variance components tend to zero or not
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Method III: Mixing distribution I

- Remember: too large values shift SCP up, which increase false

�rate.
This should be avoided

- Outlier tests commonly used

- Why outlier tests may be inappropriate:
I outlier tests work perfect if the underlying distribution is known. Here even

normal/log?
I outlier tests should identify a tiny proportion of extreme values. Assays exist

with p̂ADA+50%.
I Even for 10% ADA+ taking the 95% percentile into account ) outlier test?
I a repeated use of outlier tests to achieve an unimodal (normal) distribution if

a mixing distribution exists seem to be questionable (Holland et al. (2013))
I no simple one-way layout exists: it can be complicated hierarchically
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Method III: Mixing distribution II
- Alternative: A) Mixing distribution approach Jaki et al. (2011). Allow
mixing distribution between negative values and positive values under
healthy volunteer samples already

Y = (1� p)YADA� + pYADA+

I
Ynegative ⇠ F (µnegative ,�2

negative) , Ypositive ⇠ G (µpositive ,�2
positive) for

some known distributions F and G

I The (1� p)ynegative data are selected based on estimated model and
using only these negative data a quantile approach is used for cut-point
estimation

I This can be performed with the R-package gamlss.mx for an
pseudo-one-way layout after pooling over plates

I restricted to one-way layout
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Method III: Mixing distribution III

- Alternative: B) Mixing distribution approach in the mixed model
Grun and Leisch (2007, 2008, 2009); Grun et al. (2012); Scharl et al.
(2010)

- Considering heterogeneous variances:
I between IDs, between replicated samples
I Random e↵ects in 2-component mixture model: both, equal random

e↵ects and equal residual variance
I Equal random e↵ects, di↵erent residual variance
I Equal residual variance, di↵erent random e↵ects
I Both, di↵erent random e↵ects and di↵erent residual variance

- Both approaches available as R programs

- Depending on the data condition and the particular design
transformation ) normalization ) selected ADA- population
assuming ... ) estimation of the cutpoint in the mixed model
may be complicated
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A user-friendly R program I

Normalization assuming normal and log-normal distribution

Testing normal vs. log-normal distribution in the mixed model

Mixing distribution assuming:

I bimodal distribution
I heterogeneous variances
I random factor(s)
I selecting ADA

� samples for SCP estimation

Prediction limit in the mixed model for nested or crossed between
plate e↵ects
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A user-friendly R program II

Interactive web application (shiny): data, variables and model options
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A user-friendly R program III

Notice: non-responder ... ADA-

R-code for more complex approach for statisticians: i) AIC-based
model selection for di↵erent random factor formulation, ii) Di↵erent
random factor formulations, iii) variance heterogeneities

22 / 25



Summary I

Di↵erent assays with di↵erent designs and data conditions: we
recommend a case-by-case analysis by a biostatistician instead of a
simplified decision tree approach

The decision makers are biologists and we understand their need for a
simplified, robust approach. For some assays it works, for others not.
Here, the danger of biased cutpoint estimation can be serious

The heterogeneities in some assays are rather complex. Therefore,
other approaches than SCP may be appropriate, e.g. for in-study
data, classification, supervised or unsupervised learning

A series of R programs and a web interface are available

Randomize samples within the plates

A nonparametrical prediction interval is available Frey (2013), but not in the mixed model
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