

EIP* European Immunogenicity Platform

Affinity of Anti-Drug Antibodies in human plasma is a potential biomarker for immunogenicity assessment of therapeutic proteins: lessons learned from FVIII replacement therapy

Christoph Hofbauer, PhD

Supervisor R&D, Immunology Research & Innovation Baxter BioScience, Vienna, Austria

Outline

- Introduction
 - Severe Hemophilia A & FVIII-specific antibody responses
 - Model for immune regulation of FVIII-specific antibody responses
- Affinity assessment of FVIII-specific antibodies
 - Methodological approach & Method validation
 - Affinity of FVIII-specific antibodies in healthy individuals and severe hemophilia A patients
- Longitudinal monitoring of FVIII-binding antibodies
 - Proof of principle data
 - Hemophilia Inhibitor PUP Study
- Take home messages

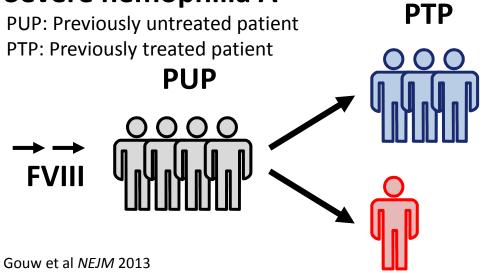
Outline

- Introduction
 - Severe Hemophilia A & FVIII-specific antibody responses
 - Model for immune regulation of FVIII-specific antibody responses
- Affinity assessment of FVIII-specific antibodies
 - Methodological approach & Method validation
 - Affinity of FVIII-specific antibodies in healthy individuals and severe hemophilia A patients
- Longitudinal monitoring of FVIII-binding antibodies
 - Proof of principle data
 - Hemophilia Inhibitor PUP Study
- Take home messages

Severe hemophilia A hard facts

Baxter

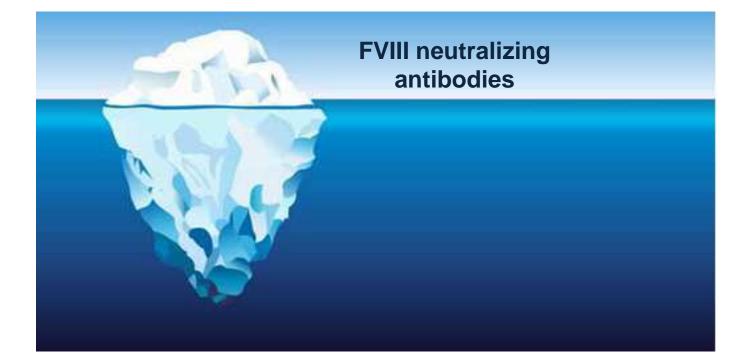
25 February 2015


Severe hemophilia A hard facts

- is a life-threatening, X-linked congenital bleeding disorder causing complications such as hemorrhages and joint damage
- caused by functional absence of coagulation factor VIII (FVIII)
- incidence is approx. 1 in 5000 males (Hoyer NEJM 1994)
- current treatment is based on FVIII substitution with recombinant or plasma derived FVIII products
- development of neutralizing antibodies is the major treatment complication of hemophilia A care

Prevalence of FVIII neutralizing antibodies

Severe hemophilia A


without FVIII neutralizing antibodies Approx. 70%

Baxter

with FVIII neutralizing antibodies Approx. 30%

FVIII neutralizing antibodies are only the tip of the iceberg



Reipert B. Hematology, Am Soc Hematol Educ Program. 2014

FVIII neutralizing antibodies are only the tip of the iceberg

Reipert B. Hematology, Am Soc Hematol Educ Program. 2014

Immunogenicity assessment of FVIII

Baxter

FVIII-binding antibodies (ADA)

neutralizing antibodies

portion of binding antibodies that <u>does neutralize</u> FVIII biologic function **non-neutralizing antibodies** portion of binding antibodies that <u>does not neutralize</u> FVIII biologic function

Immunogenicity assessment of FVIII

FVIII-binding antibodies (ADA)

neutralizing antibodies portion of binding antibodies that <u>does neutralize</u> FVIII biologic function **non-neutralizing antibodies** portion of binding antibodies that <u>does not neutralize</u> FVIII biologic function

Question in need to be addressed:

What is the difference between non-neutralizing antibodies found in healthy population and neutralizing antibodies found in patients?

Immune regulation of FVIII-specific antibody responses

CD4⁺ T-cell independent induction of antibodies antibodies B cell Affinity maturation: (+) $IgM \longrightarrow IgG, IgA$

Reipert et al *Current and Future Issues in Hemophilia Care* 2011

25 February 2015

Christoph Hofbauer, PhD - EIP Lisbon

Immune regulation of FVIII-specific antibody responses

CD4⁺ T-cell dependent induction CD4⁺ T-cell independent induction of antibodies of antibodies antibodies antibodies FVIII **B** cell activated **B** cell antibody-producing antibody-producing CD4⁺ T cell plasma cells plasma cells Affinity maturation: ++++ Affinity maturation: (+) lgM \rightarrow IgG (IgG1-4), IgA → IgG, IgA **IgM**

Experimental approach:

- Detection of FVIII neutralizing antibodies (Bethesda Assay)
- Ig isotype and IgG subclass determination of FVIII-specific antibodies (ELISA)
- Affinity determination of FVIII-specific antibodies (Affinity ELISA)

Reipert et al *Current and Future Issues in Hemophilia Care* 2011

Immune regulation of FVIII-specific antibody responses

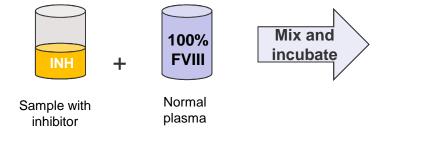
CD4⁺ T-cell dependent induction CD4⁺ T-cell independent induction of antibodies of antibodies antibodies antibodies FVIII **B** cell activated **B** cell antibody-producing antibody-producing CD4⁺ T cell plasma cells plasma cells Affinity maturation: (+) Affinity maturation: ++++ \rightarrow IgG (IgG1-4), IgA **IgM IgM** lgG, lgA

Experimental approach:

- Detection of FVIII neutralizing antibodies (Bethesda Assay)
- Ig isotype and IgG subclass determination of FVIII-specific antibodies (ELISA)
- Affinity determination of FVIII-specific antibodies (Affinity ELISA)

Reipert et al *Current and Future Issues in Hemophilia Care* 2011

Outline


- Introduction
 - Severe Hemophilia A & FVIII-specific antibody responses
 - Model for immune regulation of FVIII-specific antibody responses
- Affinity assessment of FVIII-specific antibodies
 - Methodological approach & Method validation
 - Affinity of FVIII-specific antibodies in healthy individuals and severe hemophilia A patients
- Longitudinal monitoring of FVIII-binding antibodies
 - Proof of principle data
 - Hemophilia Inhibitor PUP Study
- Take home messages

Detection of FVIII neutralizing antibodies (FVIII inhibitors): Assay principle of Nijmegen/Bethesda Assay

Baxter

Test principle: Bethesda assay

Patient plasma (concentrated and diluted) Mixed in 1:1 with normal human plasma (NHP)

→ incubated at 37℃ /2h

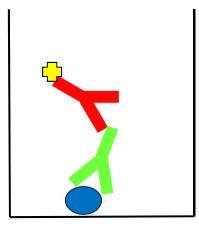
→ activity measured and compared to a control (NHP mixed in 1:1 with buffer)

\bigcirc	
50%	
FVIII:C	

< 50%

FVIII:C

No neutralizing antibody → 50 % FVIII activity measured


Neutralizing antibody present in the patient plasma → inhibition of FVIII function of NHP, thus resulting in decreased FVIII activity

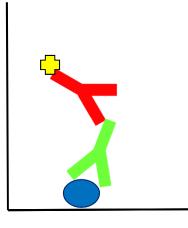
Quantity of neutralizing antibody is expressed as BU/mI

1 BU/ml = the amount of the inhibitor which decreases the FVIII activity to 50 % in the assay mixture compared to the control sample

Methodological approach: Anti-FVIII IgM, IgA, IgG1-4 direct binding ELISA

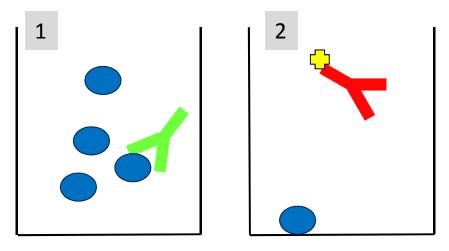
1) Screening assay

- 1) Coating of ELISA plate with FVIII
 - 2) Incubate plasma sample containing FVIII-binding antibodies


Detect FVIII-binding antibodies using enzyme-conjugated secondary antibody

Whelan et al Blood 2013

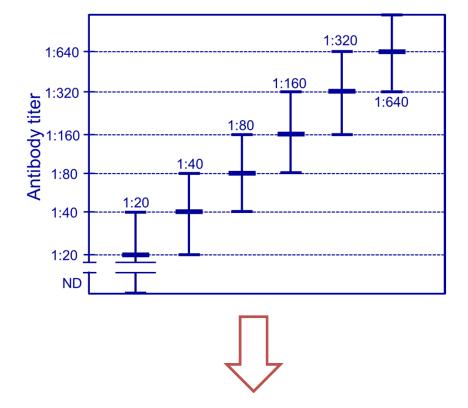
Methodological approach: Anti-FVIII IgM, IgA, IgG1-4 direct binding ELISA


Baxter

1) Screening assay

- 1)
- Coating of ELISA plate with FVIII
- Incubate plasma sample containing FVIII-binding antibodies
- 3) Detect FVIII-binding antibodies using enzyme-conjugated secondary antibody

2) Confirmatory assay



- 1) Pre-incubation of plasma sample with FVIII
- 2) Apply pre-incubated sample to screening assay
- → FVIII-antibody complex is not detectable in screening resulting in a lower signal in the ELISA assay

Whelan et al Blood 2013

Confirmatory assay

Validation demonstrated a variability of the ELISA assay platform of \pm 1titer step. Therefore, differences \leq 2 titers steps may be due to variability.

Antibody titer needs to be decreased by at least three titer steps Whelan et al. Blood 2013 Antibody titer needs to be decreased by at least three titer steps after competition to confirm specificity of the ELISA assay

25 February 2015

Methodological approach: Anti-FVIII Affinity ELISA

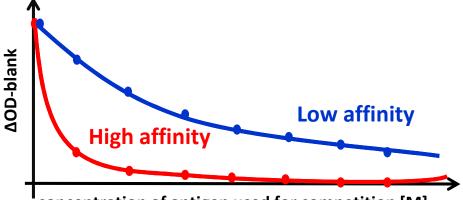
Analysis of the affinity of antibodies against FVIII in human plasma

Assay specificities:

- no need for IgG isolation \rightarrow artefacts (McMahon *JI Methods* 2010)
- low plasma sample consumption
- Individual assessment of Ig isotypes and IgG subclasses
- quantitative measurement of apparent affinity
- address polyclonality of human plasma

Hofbauer et al. *Blood* 2015

Methodological approach: Anti-FVIII Affinity ELISA


Analysis of the affinity of antibodies against FVIII in human plasma

Assay specificities:

- no need for IgG isolation \rightarrow artefacts (McMahon *JI Methods* 2010)
- low plasma sample consumption
- Individual assessment of Ig isotypes and IgG subclasses
- quantitative measurement of apparent affinity
- address polyclonality of human plasma

Affinity ELISA

- competition ELISA with multiple concentrations of FVIII
- can detect up to two affinity populations of FVIII-specific antibodies

concentration of antigen used for competition [M]

Bobrovnik et al J. Mol. Recognit. 2010

Hofbauer et al. *Blood* 2015

25 February 2015

Baxter

Leading the way in expe and clinical research in					experimental h in hematology	4	search	Q Advanced Search
Home	About <i>Blood</i>	Authors	Submit t	o Blood	Subscriptions	s Classifieds		f ¥ in
Curre	Current Issue First Edition		٦	Fopics	Collections	All Issues	Abstracts	

Home / First Edition

Affinity of FVIII-specific antibodies reveals major differences between neutralizing and non-neutralizing antibodies

Christoph J. Hofbauer¹, Shawn F.J. Whelan¹, Maria Hirschler¹, Peter Allacher¹, Frank M. Horling¹, John-Philip Lawo¹, Johannes Oldenburg², Andreas Tiede³, Christoph Male⁴, Jerzy Windyga⁵, Andreas Greinacher⁶, Paul N. Knöbl⁷, Gerald Schrenk¹, Jadranka Koehn¹, Friedrich Scheiflinger¹, and Birgit M. Reipert¹,*

Author Affiliations

- ¹ Baxter Innovation GmbH, Vienna, Austria;
- ² Institute for Experimental Hematology and Transfusion Medicine, Bonn, Germany;
- ³ Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany;
- 4 Department of Paediatrics, Medical University of Vienna, Vienna, Austria;
- 5 Institute of Hematology and Transfusion Medicine, Warsaw, Poland;
- ⁶ Institute for Immunology and Transfusion Medicine, Greifswald Medical School, Greifswald, Germany;
- 7 Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria

Validation plan for Anti-FVIII Affinity ELISA

• 3 representative samples:

• anti-FVIII IgG1 MAb in negative control plasma

△ anti-FVIII IgG1 positive plasma from healthy donor

♦ Mix of A and B

total IgG Intra-Assay variability

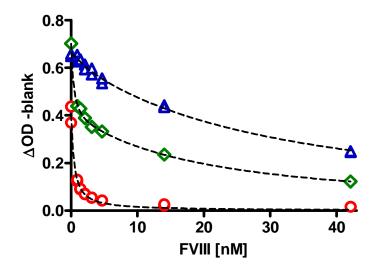
6 replicates within 1 run

total IgG Inter-Assay variability

- 6 individual runs (3 operators on 2 days)
- total IgG robustness towards freeze/thaw cycles
 - Standard sample + 5 additional freeze/thaw cycles
- total IgG vs. IgG1 Intra-Assay stability

Acceptance criteria: Coefficient of Variation (CV) < 25%

• Comparison of different technology platforms using anti-FVIII IgG1 MAb

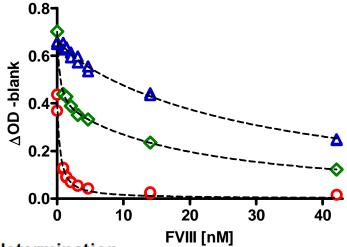

Hofbauer et al. *Blood* 2015

25 February 2015

Validation of anti-FVIII Affinity ELISA

3 representative samples:

- anti-FVIII IgG1 MAb in negative control plasma
- ▲ anti-FVIII IgG1 positive plasma from healthy donor
- Mix of A and B


Hofbauer et al. *Blood* 2015

Validation of anti-FVIII Affinity ELISA

Baxter

3 representative samples:

- anti-FVIII IgG1 MAb in negative control plasma
- ▲ anti-FVIII IgG1 positive plasma from healthy donor
- Mix of A and B

Table 1: Model selection for apparent affinity determination

Sample	R ² > 0.7		Lower Limit of 95% Cl > 0		F-	Selected	Population 1	Population 2
	M1	M2	M1	M2	test	Model	K _A [M⁻¹]	K _A [M ⁻¹]
Ο	Yes	Yes	Yes	No	NA	M1	4.9x10 ⁹	NA
Δ	Yes	Yes	Yes	No	NA	M1	9.1x10 ⁷	NA
\diamond	Yes	Yes	Yes	Yes	M2	M2	5.4x10 ⁹	9.9x10 ⁷

Hofbauer et al. *Blood* 2015

Validation of anti-FVIII Affinity ELISA

3 representative samples:

- − anti-FVIII IgG1 MAb in negative control plasma
- Δ anti-FVIII IgG1 positive plasma from healthy donor
- \diamond Mix of A and B

Acceptance criteria: Coefficient of Variation (CV) < 25%

\bigcirc Validation Assay 0 Δ criteria Population 1 Population 2 **Intra-Assay** 10% 5% 15% 9% stability total **Inter-Assay** 18% 11% 17% 5% stability lgG Robustness 20% 8% 4% 8% (Freeze/Thaw) **Intra-Assay** 5% lgG1 2% 5% 11% stability

Affinity ELISA validation summary, n=6,CV [%]

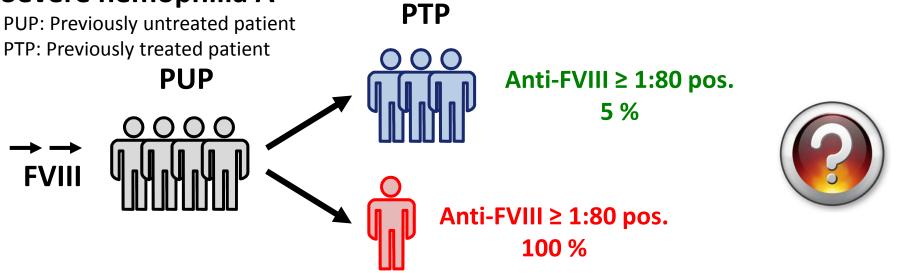
Hofbauer et al. *Blood* 2015

MAb	competiti	on based	direct binding			
	Affinity ELISA	SET	SPR C1 Fc capture	SPR CM5 Fc capture	BLI Strep Biotin-FVIII	
K _A [M ⁻¹]	5.3x10 ⁹	4.2x10⁹	1.5x10 ⁹	5.1x10 ⁷	2.3x10 ⁸	

SET = Solution Equilibrium Titration

SPR = Surface Plasmon Resonance

C1, CM5 = commercially available Biacore Chip technologies


Fc capture = commercially available kit for antibody immobilization

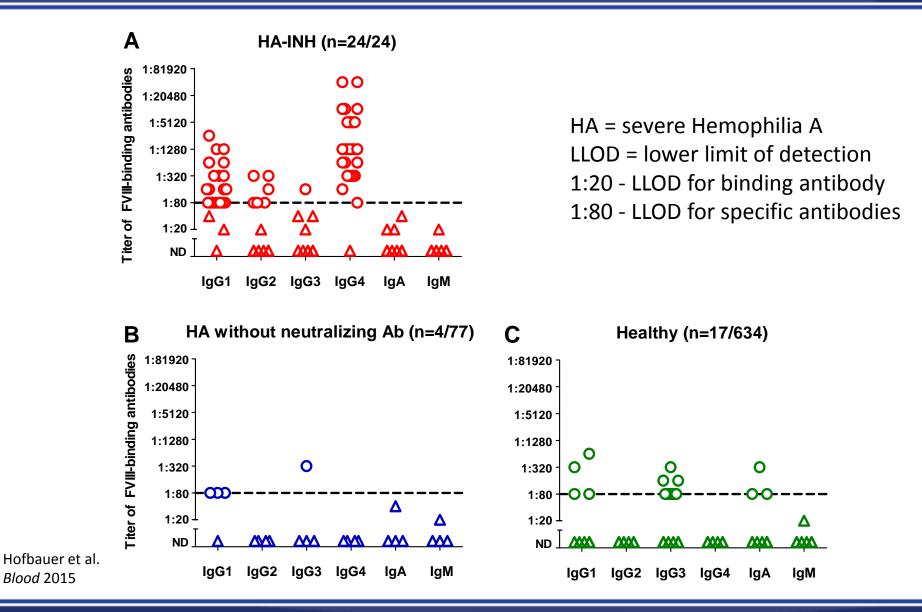
BLI = Biolayer Interferometry

Hofbauer et al. *Blood* 2015

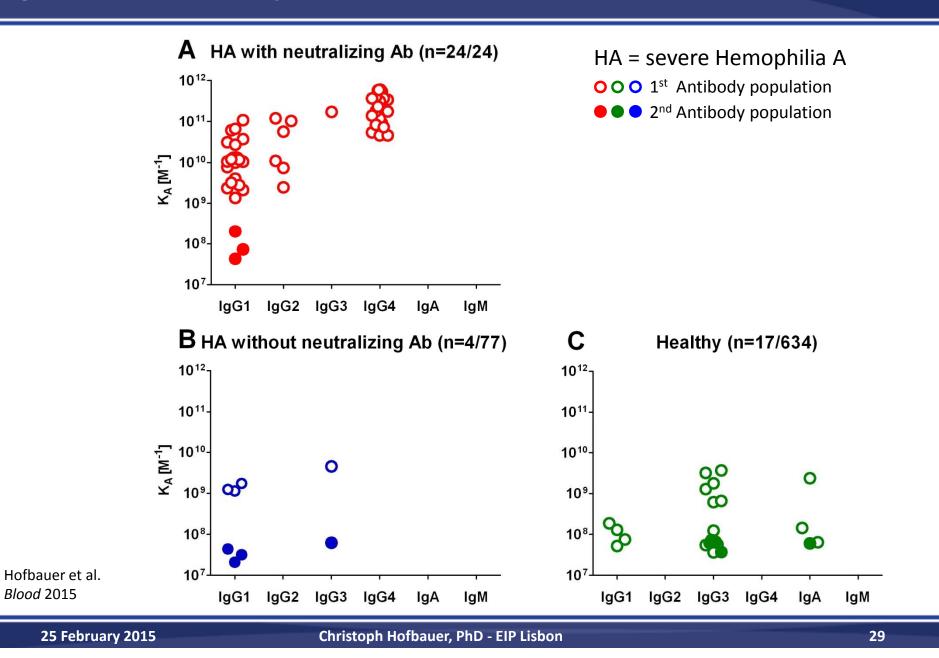
Affinity of FVIII-specific antibodies?

Severe hemophilia A

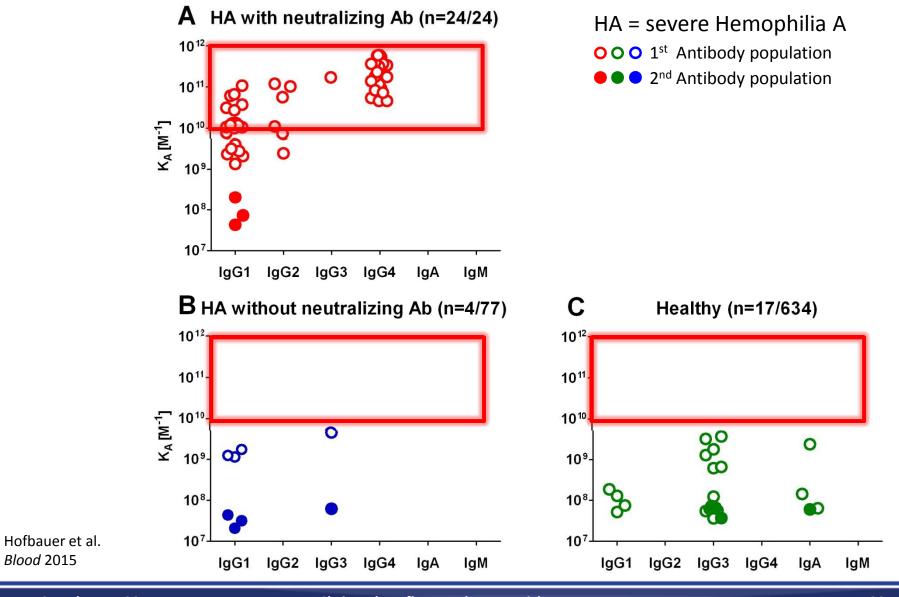
Healthy


Baxter

Hofbauer et al. *Blood* 2015


25 February 2015

Christoph Hofbauer, PhD - EIP Lisbon


Distinct patterns for Ig isotypes and IgG subclasses of FVIII-specific antibodies in healthy individuals and in severe hemophilia A patients

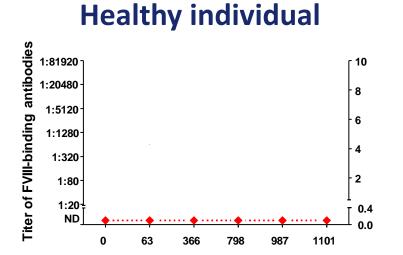
Distinct patterns for apparent affinities of Ig isotypes and IgG subclasses of FVIII-specific antibodies

FVIII-specific antibodies in HA patients with neutralizing Ab are of higher affinity compared to HA without neutralizing Ab and Healthy

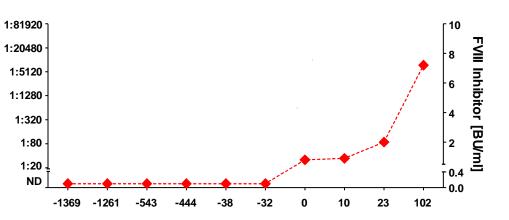
25 February 2015

Christoph Hofbauer, PhD - EIP Lisbon

Outline


- Introduction
 - Severe Hemophilia A & FVIII-specific antibody responses
 - Model for immune regulation of FVIII-specific antibody responses
- Affinity assessment of FVIII-specific antibodies
 - Methodological approach & Method validation
 - Affinity of FVIII-specific antibodies in healthy individuals and severe hemophilia A patients
- Longitudinal monitoring of FVIII-binding antibodies
 - Proof of principle data
 - Hemophilia Inhibitor PUP Study
- Take home messages

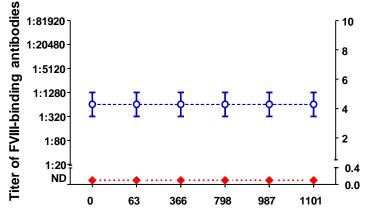
Healthy individual


- 22 year old, healthy female donor
- No history of coagulation disorders
- Regular plasma samples for almost 3 years
- No FVIII neutralizing antibodies

Severe hemophilia A patient

- 29 year old severe hemophilia A patient on daily FVIII prophylaxis
- progressive athropathy of the ankles and the right knee
- Bethesda assays during prophylactic treatment were negative
- FVIII neutralizing antibodies were first diagnosed after a FVIII washout period of 72 hours

Severe hemophilia A patient



FVIII inhibitor

Hofbauer et al. Blood 2015

25 February 2015

Healthy individual

Severe hemophilia A patient

Hofbauer et al. *Blood 2015*

25 February 2015

Christoph Hofbauer, PhD - EIP Lisbon

FVIII inhibitor

0

FVIII-binding IgG1

10

8

6

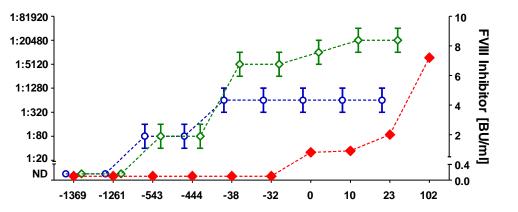
2

0.4

0.0

1101

FVIII inhibitor


Healthy individual


366

798

987

Severe hemophilia A patient

Titer of FVIII-binding antibodies

1:5120

1:1280

1:80

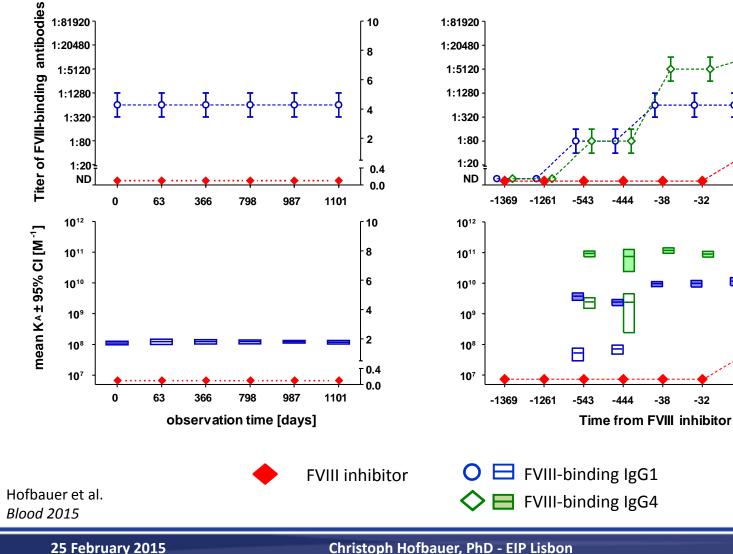
1:20

ND

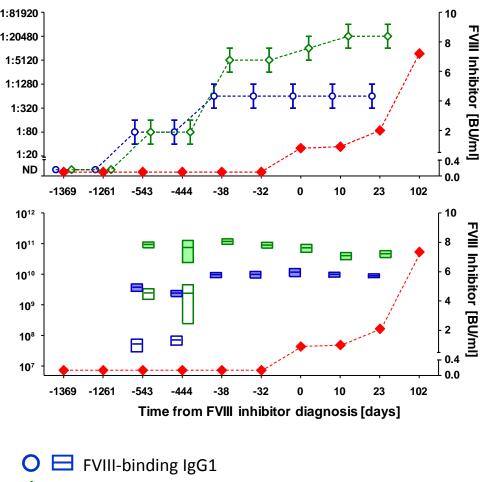
0

63

25 February 2015



Ο


FVIII-binding IgG1

FVIII-binding IgG4

Healthy individual

Severe hemophilia A patient

- High-affinity FVIII-specific IgG1 and IgG4 antibodies were detectable up to 543 days prior to the first diagnosis of FVIII neutralizing antibodies
- For comparison FVIII-specific antibodies seen in some healthy individuals and in some patients without FVIII neutralizing antibodies are of low affinity
- So far, FVIII-specific IgG4 has only been observed in patients with evolving or established FVIII neutralizing antibodies

Working Hypothesis:

High-affinity FVIII-specific IgG4 and IgG1 are early biomarkers of evolving FVIII neutralizing antibody responses in patients with severe hemophilia A

<u>Hemophilia</u> Inhibitor <u>PUP</u> Study (HIPS)

Baxter

Current status:21 centers agreed, 18 IRB approvals, 18 centers qualified9 patients enrolled, 2 patients completed the studywithout FVIII neutralizing antibody development

Laboratory qualification completed
Laboratory qualification ongoing

Investigator Name	City
Blatny	Brno
Brown	Houston
Fijnvandraat	Amsterdam
Gruppo	Cincinnati
Journeycake	Dallas
Klintman	Malmö
Leissinger	New Orleans
Male	Vienna
McGuinn	Cornell
Meeks	Atlanta
Monahan	Chapel Hill
Oldenburg	Bonn
Radulescu	Lexington
Ragni	Pittsburgh
Recht	Portland
Santagostino	Milano
Shapiro	Indianapolis
Staber	Iowa City
Yaish	Salt Lake City
Yee	Houston
Corrales-Medina	Miami

- Introduction
 - Severe Hemophilia A & FVIII-specific antibody responses
 - Model for immune regulation of FVIII-specific antibody responses
- Affinity assessment of FVIII-specific antibodies
 - Methodological approach & Method validation
 - Affinity of FVIII-specific antibodies in healthy individuals and severe hemophilia A patients
- Longitudinal monitoring of FVIII-binding antibodies
 - Proof of principle data
 - Hemophilia Inhibitor PUP Study
- Take home messages

- Neutralizing antibodies against FVIII are the major treatment complication of current hemophilia A care
- FVIII-specific antibodies found in severe hemophilia A patients without neutralizing antibodies and healthy individuals are of low and medium apparent affinity
- FVIII-specific antibodies in severe hemophilia A patients with neutralizing antibodies are predominately of high apparent affinity
- Apparent affinity of anti-FVIII antibodies is a potential new biomarker helping to differentiate between pathogenic high affinity, neutralizing antibodies and low affinity, non-neutralizing antibodies

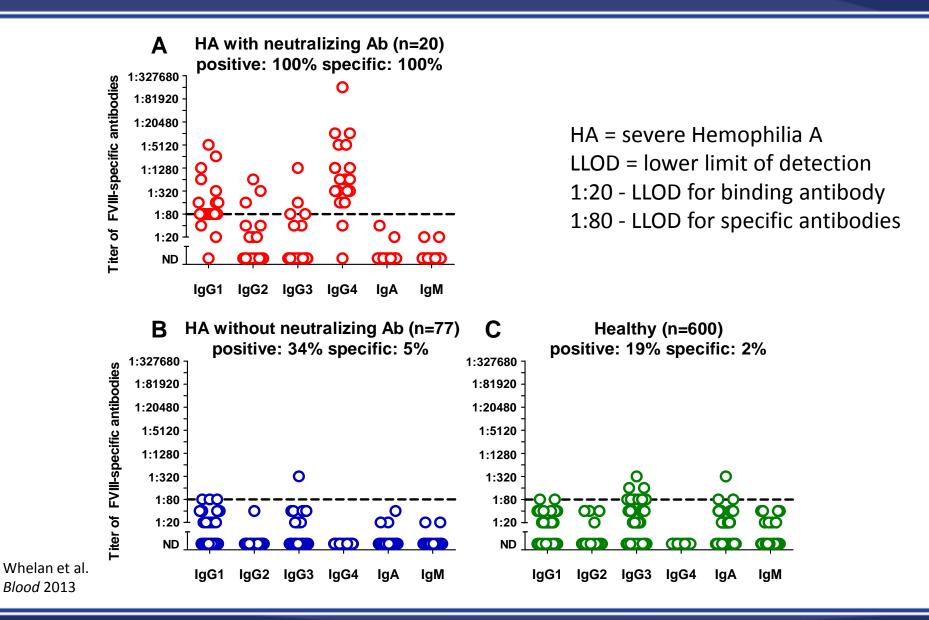
Acknowledgements

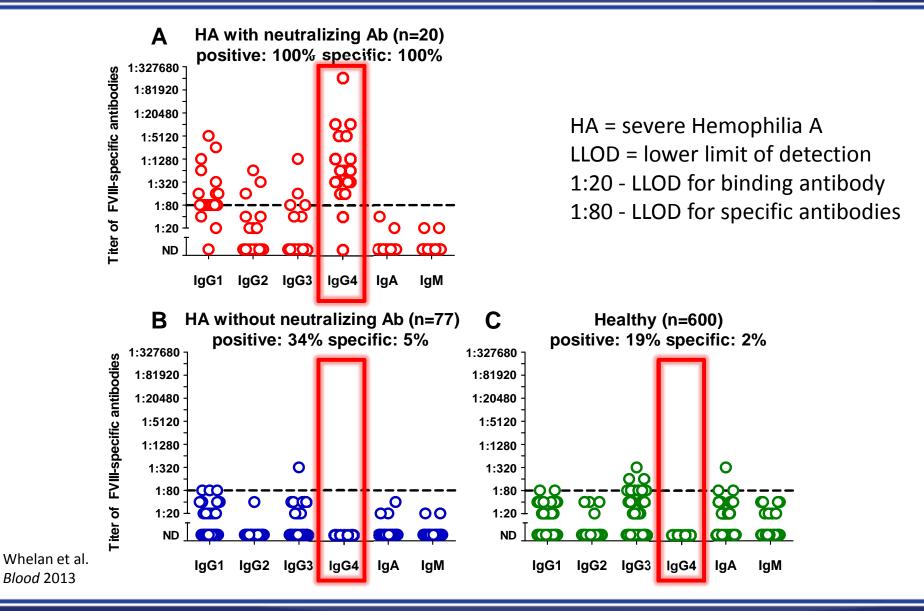
Baxter

- HIPS immunology lab team
 - Shawn Whelan (2009-2012)
 - Eva Altinger (2009-2011)
 - Maria Hirschler (2011-2013)
 - Damir Fetahagic
 - Fatima Al-Awadi
- Peter Allacher
- Frank Horling
- Birgit Reipert
- Friedrich Scheiflinger

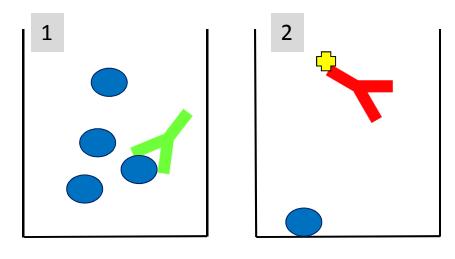
- MEDICAL SCHOOL HANNOVER
 - Andreas Tiede
- UNIVERSITY OF TEXAS HOUSTON
 - Deborah Brown (HIPS PI)
- UNIVERSITY OF MILAN
 - Elena Santagostino (HIPS PI)
- All participating patients and their families

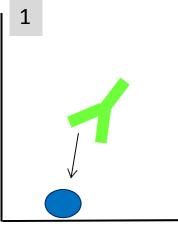
THANK YOU FOR YOUR ATTENTION

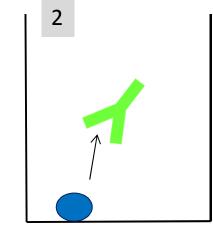



Christoph Hofbauer, PhD - EIP Lisbon

BACKUP


Distinct patterns for Ig isotypes and IgG subclasses of FVIII-binding antibodies in healthy individuals and in severe hemophilia A patients


Competition-based vs. direct binding affinity assessment

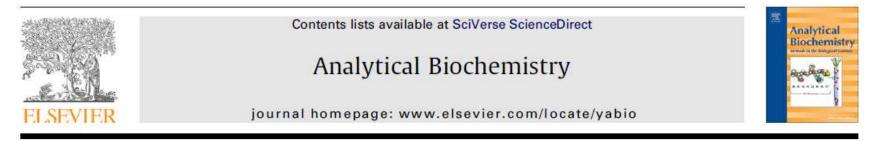

1) Competition

- + Concentration of antibodies is not critical
- + Specificity via secondary antibody
- + High sensitivity
- + High throughput and low cost
- Determination of average affinity constant

2) Direct binding

Baxter

SENSOR


SENSOR

- Concentration of antibodies is critical
- Bias via unspecific binding
- Low sensitivity
- Low throughput and high cost
- + Characterization of binding kinetics (association and dissociation)

A recent biacore publication

Baxter

Analytical Biochemistry 429 (2012) 58-69

Biacore surface matrix effects on the binding kinetics and affinity of an antigen/antibody complex

Andrew W. Drake¹, Margaret L. Tang, Giuseppe A. Papalia², Gregory Landes³, Mary Haak-Frendscho¹, Scott L. Klakamp^{*,4}

Takeda San Francisco, 285 E. Grand Ave. South San Francisco, CA 94080, USA

Determined affinity indirect proportional to negative charge density on Biacore Sensor

Method	n	$k_{\rm a} ({\rm M}^{-1}{\rm s}^{-1})$	$k_{\rm d}~({\rm s}^{-1})$	K _D (pM)
Biacore				
CM5 (amine)	5	$1.13(0.04) \times 10^5$	$2.23(0.10) \times 10^{-4}$	1970 (140)
CM5 (capture)	3	$5.81(0.12) \times 10^4$	$1.67(0.05) \times 10^{-4}$	2870 (120)
CM4 (amine)	4	$2.87(0.16) \times 10^5$	$1.91(0.06) \times 10^{-4}$	664 (47)
CM4 (aldehyde)	4	$3.19(1.05) \times 10^5$	$1.78(0.05) \times 10^{-4}$	580 (219)
CM4 (capture)	3	$1.28(0.30) \times 10^5$	$1.65(0.14) \times 10^{-4}$	1290 (260)
C1 (amine)	6	$1.02(0.06) \times 10^{6}$	$1.91(0.09) \times 10^{-4}$	186(8)
C1 (capture)	3	$8.60(0.47) \times 10^5$	$2.86(0.44) \times 10^{-4}$	333 (63)
Solution phase	6	n/a	n/a	91.9 (32.4)
KinExA				
Standard	$4 K_{\rm D}, 4 k_{\rm a}$	$3.31(0.10) \times 10^{6}$	7.32 $(0.23) \times 10^{-5}$	22.1 (4.7)
With dextran	$6 K_{\rm D}, 5 k_{\rm a}$	$2.45(0.18) \times 10^{6}$	$1.47(0.10) \times 10^{-4}$	60.1 (27.3)

Note: k_a , association rate constant; k_d , dissociation rate constant; K_D , equilibrium dissociation constant; n/a, not applicable. The numbers shown in parentheses are the 95% confidence intervals.

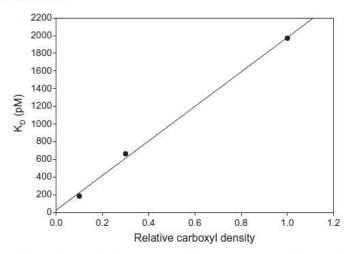
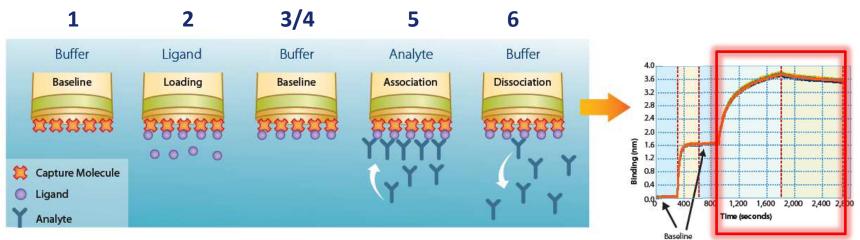
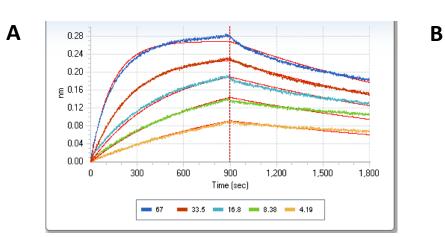



Fig.6. Correlations between the K_D and the relative negative charge of the dextran matrix for Ag binding to amine-coupled mAb on C1, CM4, and CM5 chips.

Follow-up activity: C1 measurement in BG (Gerald Schrenk)

Biolayer Interferometry Anti-FVIII kinetic assay steps

Figures courtesy of fortéBIO

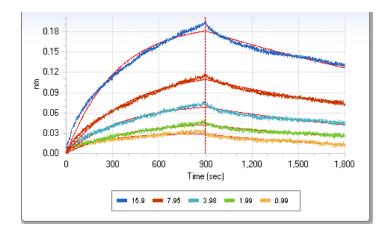

Samples under investigation:

Sample	Info
Anti-FVIII MAb	Human monoclonal IgG1 antibody
Healthy donor - purified antibody	High salt elution from FVIII affinity column
Healthy donor - plasma	IgG1 pos. healthy donor plasma
Patient plasma with neutralizing antibodies	IgG1 & IgG4 pos. severe HA patient

Comparison of anti-FVIII MAb & anti-FVIII purified antibody

Baxter

Fitting Model: Global Fit, 1:1 Interaction, R_{max} unlinked by sensor



1:2 dilution series in buffer

Anti-FVIII MAb

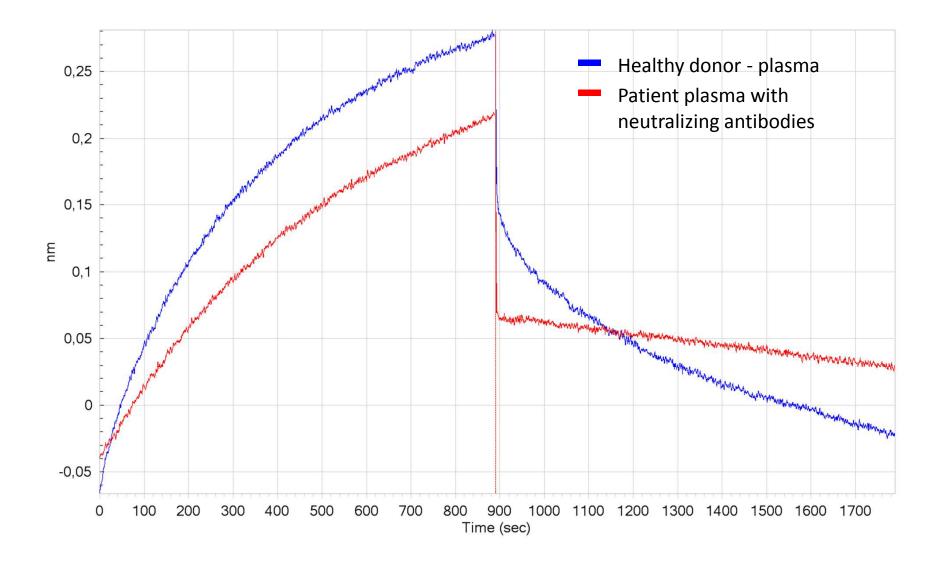
Sample ID	<i>k</i> _a (1/Ms)	<i>k</i> _d (1/s)	K _D (nM)
Anti-FVIII MAb	1,04E+05	4,63E-04	4,5

Healthy donor - purified antibody 1:2 dilution series in buffer

Sample ID	k _a (1/Ms)	<i>k</i> _d (1/s)	K _D (nM)
Anti-FVIII pAb1	1,70E+05	4,74E-04	2,8

25 February 2015

Quantitative comparison of Affinity ELISA vs. BLI


 $K_D = 1/K_A$

Sample	Anti-FVIII ELISA Titer	Anti-FVIII Affinity ELISA K _D [nM]	Anti-FVIII Affinity BLI K _D [nM]
Anti-FVIII MAb	n/a	0.2	4.5
Healthy donor purified antibody	n/a	7.8	2.8
Healthy donor plasma	lgG: 1:640	13.0	n/a
Patient plasma with neutralizing antibodies	lgG: 1:640	0.1	n/a

Qualitative comparison of purified antibody & plasma (healthy donor)

Manhahit Healthy donor - plasma 0,25 Healthy donor - purified antibody 0,2 0,15 ШШ 0,1 Manager was been and the marked and and the second and the second s 0,05 and and the second an 0 Malumanyapunaunaunun -0,05 300 400 500 900 1000 1100 1200 1300 1400 1500 1600 1700 0 100 200 600 700 800 Time (sec)

Qualitative comparison of anti-FVIII healthy donor plasma **Baxter** and anti-FVIII patient plasma

