

COVA322 case study:

development of a novel anti-TNF/IL-17A bispecific FynomAb

7th OPEN SCIENTIFIC EIP SYMPOSIUM ON IMMUNOGENICITY OF BIOPHARMACEUTICALS

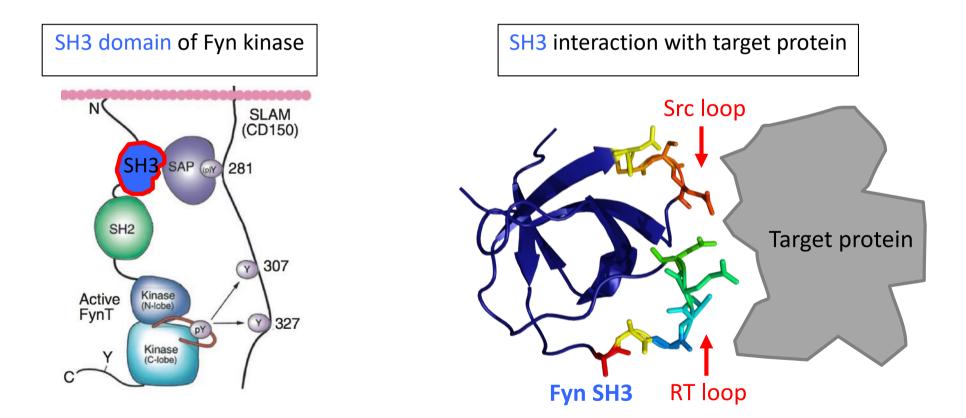
Bernd Schlereth

25 February, 2015

www.covagen.com

Outline

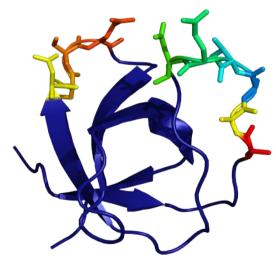
Introduction to Fynomer/FynomAb technology


COVA322 case study

- Design of COVA322 and rationale for dual cytokine targeting
- Primary and safety pharmacology
- Pharmacokinetics and Immunogenicity
- Toxicology

Fynomer technology: Fyn SH3 - the origin

- Fynomers are binding proteins derived from the SH3 domain of the Fyn kinase
- The SH3 domain contains two flexible loops (SRC and RT) that interact with the target


Fynomer technology

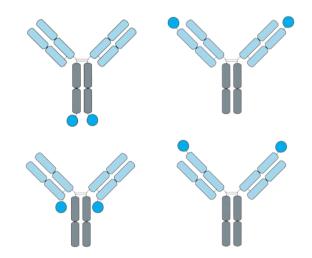
By randomly mutating the SRC and RT loops of the Fyn SH3 domain, Covagen has created a large phage display library from which Fynomers of virtually any target specificity and affinity can be isolated.

Fynomer characteristics at a glance:

- Derived from fully human SH3 protein domain
- SH3 domain is **fully conserved** (100% sequence homology) across different species
- Monomeric form, low complexity
- No cysteine residues
- Small size (7 kDa)
- High stability

Fynomer library

>8 x 10¹⁰ different library members

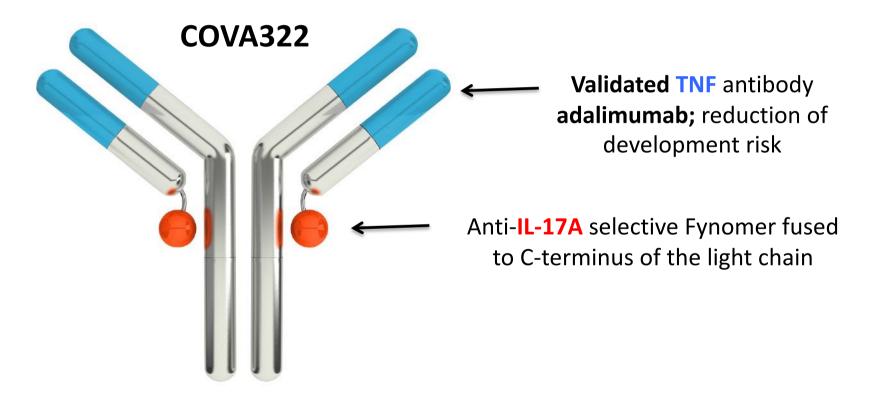

FynomAb technology

Fusion of Fynomers to monoclonal antibodies results in the generation of bi- or multispecific molecules called "FynomAbs"

FynomAb characteristics at a glance:

- FynomAbs are **stable** in vivo
- Both, Fynomers & antibody retain their activity
- Different fusion sites possible (light/heavy chain and N- or C-terminus) to allow for maximal flexibility in architecture
- Fc-mediated effector functions are maintained
- Antibody-like PK profiles
- **High productivity:** FynomAbs retain productivity of their parental antibody

Highly flexible architecture



Highly reproducible >300 FynomAbs produced to date

COVA322

Combining two clinically validated pathways in one molecule

Designed for superior efficacy vs. mono-pathway treatment of inflammatory diseases due to synergistic effects of TNF and IL-17A

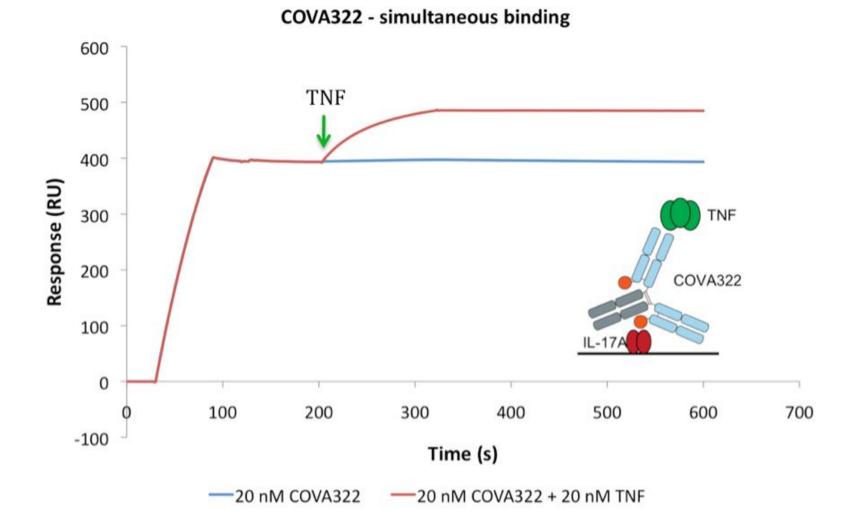
Pharm-Tox package

• Pharmacology

- Primary pharmacology: binding characterization, in vitro and in vivo bioactivity
- Safety pharmacology: part of the 4-week repeat-dose toxicity study in Cyno

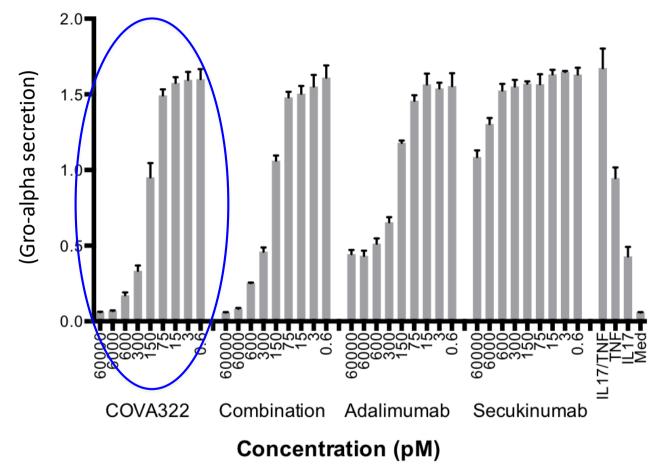
• Pharmacokinetics (PK), toxicokinetics (TK) and immunogenicity (IM)

- Pilot PK studies (COVA322 and adalimumab) in mice and Cynomolgus monkeys
- COVA322 single dose PK and dose range finding (DRF) study in Cynomolgus monkeys
- TK profiles as part of the 4-, 13- and 26-week toxicity study in Cynomolgus monkeys
- Toxicology
 - GLP 4-, 13- and 26-week repeat-dose toxicity study in Cynomolgus monkeys
 - GLP tissue cross-reactivity study with human and Cynomolgus tissues
 - Cytokine release study with human whole blood cells



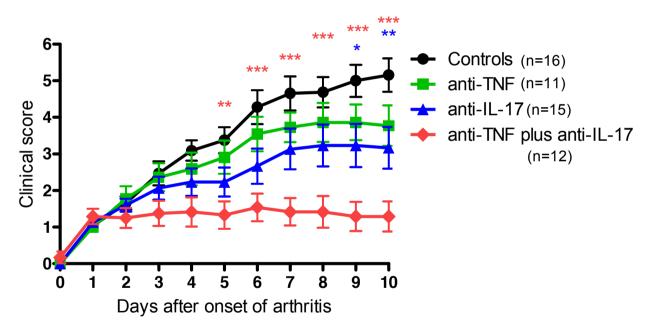
COVA322 inhibits TNF as good as adalimumab, and IL-17A at least as good as secukinumab

Binding	COVA322 properties
Affinity for human IL-17A	K _D = 36 pM (better than secukinumab)
Affinity for Cynomolgus IL-17A	K _D = 63 pM (better than secukinumab)
Affinity for human TNF-alpha	K _D = 129 pM (as adalimumab)
Affinity for Cynomolgus TNF-alpha	K _D = 120 pM (as adalimumab)
Bioactivity	COVA322 properties
IC ₅₀ values in vitro (IL-17A inhibition) HT-29, HT-1080 cell line, NHDF primary cells	IC ₅₀ = 121 to 1084 pM (better than secukinumab)
IC ₅₀ value in vitro (TNF-alpha inhibition) L929 cell line	IC ₅₀ = 429 pM (as adalimumab)



COVA322 simultaneously binds to TNF and IL-17A

COVA322 simultaneously inhibits TNF & IL-17A



- HT-29 cells were stimulated with TNF and IL-17A
- COVA322, adalimumab, secukinumab or combination of adalimumab and secukinumab were added at different concentrations
- Gro-alpha levels were measured in tissue culture supernatants

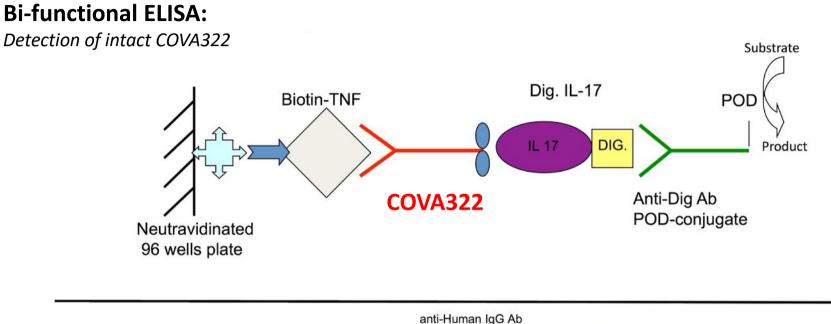
COVA322 is as efficacious as the combination of adalimumab and secukinumab

Dual TNF/IL-17 blockade more efficacious than monotherapy

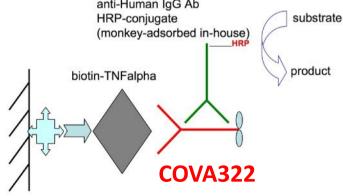
CIA mouse model:

- Dual inhibition of TNF and IL-17A with antibodies at low doses is more effective than each of the monotherapies
- Dose: 50 μg of anti-TNF Ab and/or 50 μg of anti-IL-17 Ab per mouse

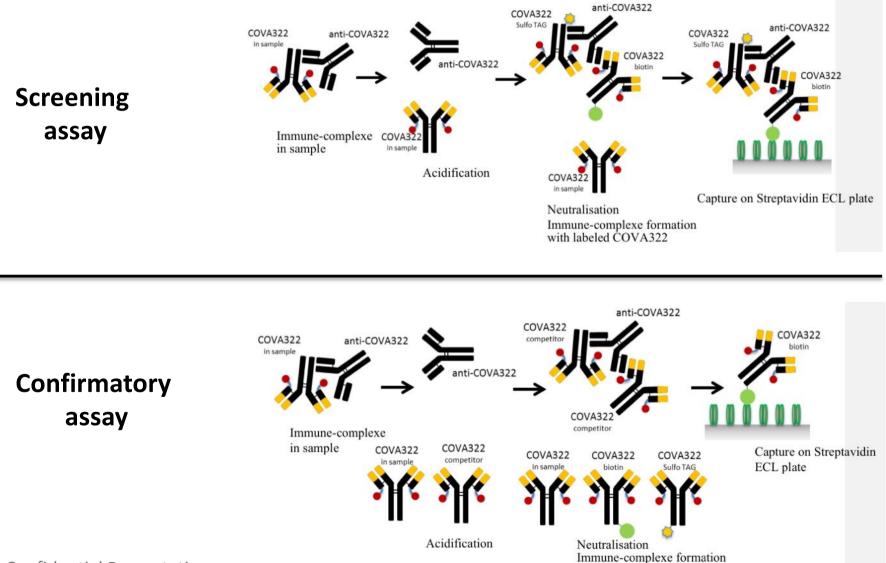
Synergistic effects at sub-therapeutic (single agent) dose levels



Pharmacokinetics and Immunogenicity


- Assay set up (PK and IM)
 - PK (mono- and bifunctional) assay
 - Anti-drug antibody (ADA) assay
- PK and IM test strategy
- Single dose PK and IM
- Repeat-dose PK/TK and IM
 - 4-and 13-week repeat-dose tox
- Specificity analysis of anti-drug antibodies

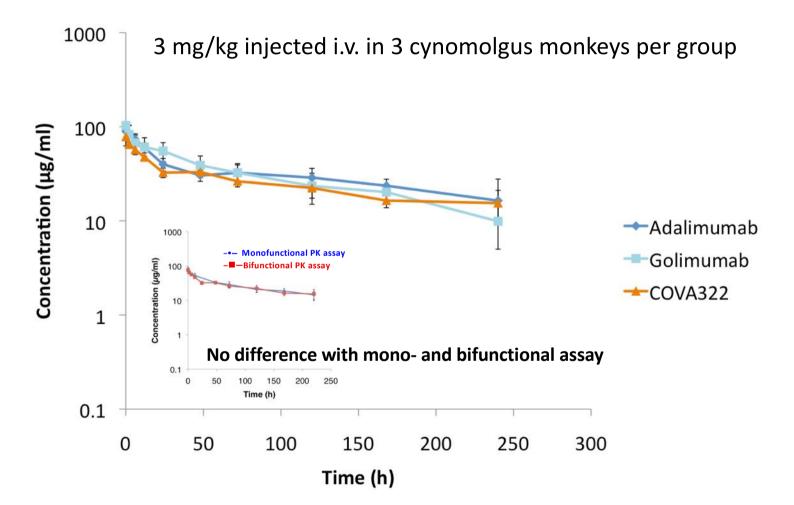
Two PK assays validated for Cynomolgus monkey



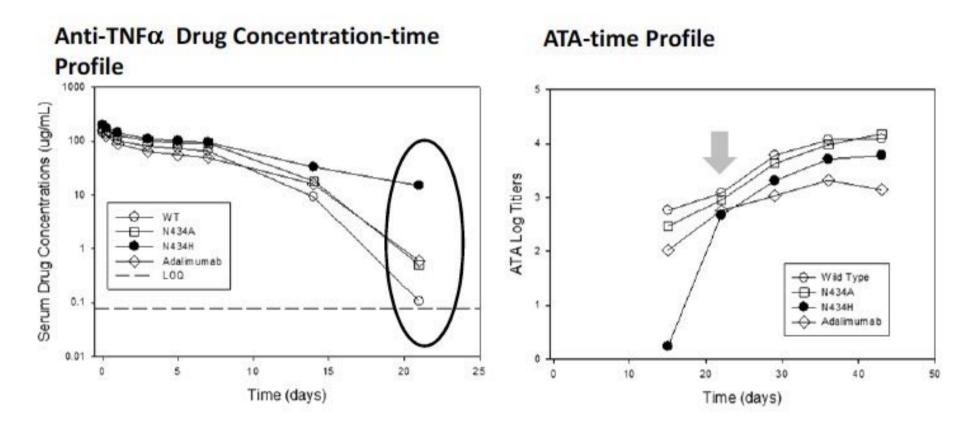
Neutravidin plate

Anti-drug antibody (ADA) assay validated

Confidential Presentation

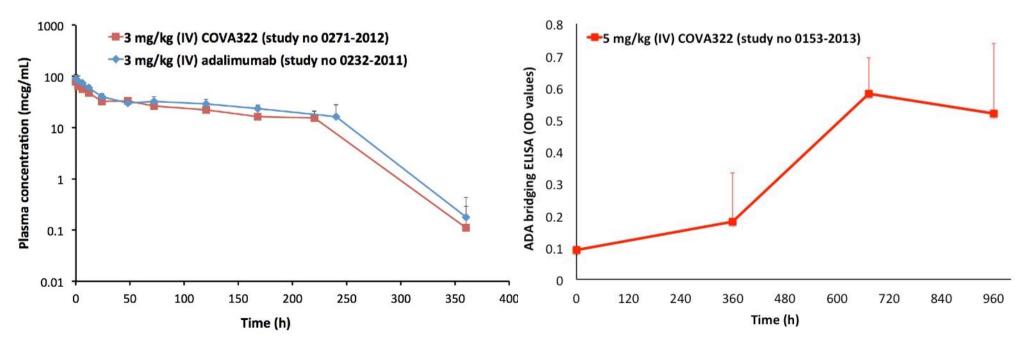

PK and Immunogenicity testing strategy

15


Single dose: COVA322 has an IgG-like PK profile in cyno

COVA322 plasma concentration-time curve is similar to that of adalimumab No degradation of Fynomer entity in pilot PK studies

Adalimumab in known to be immunogenic in Cyno following single IV dose of 5 mg/kg


• Adalimumab induced anti-drug antibodies (ADAs) around day 14 even after a single intravenous infusion (Deng et al.)

COVA322 has a comparable PK/immunogenicity profile to adalimumab in the Cynomolgus monkey

Same sharp drop in plasma concentration between 240 and 360 h

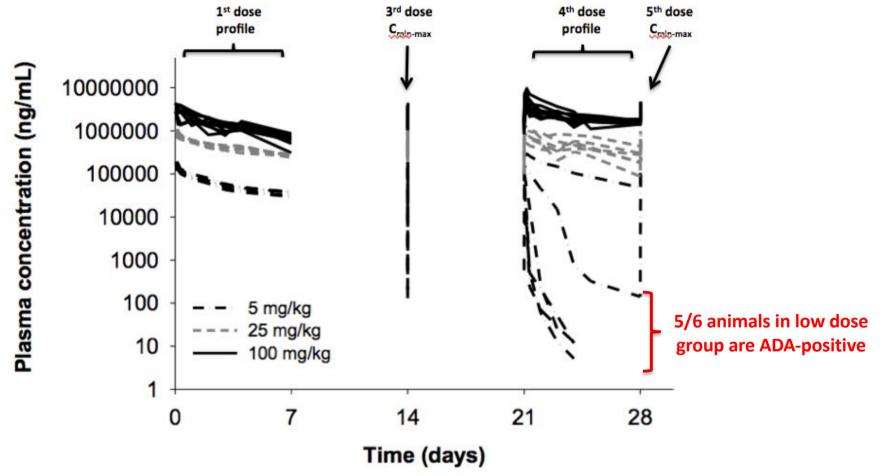
Same kinetic of ADA development starting at day 14

Toxicokinetics and immunogenicity assessment in GLP 4-Week repeat-dose toxicity study

Group number	Group description	Dose level (mg/kg)	Dose volume* (mL/kg)	Animals/group		Necropsy after	
				Male	Female	4 weeks	17 weeks
1	Control i.v.	0	10	4	4	2 M/2 F	2 M/2 F
2	Low i.v.	5	10	3	3	3 M/3 F	-
3	Intermediate - i.v.	25	10	3	3	3 M/3 F	-
4	High – i.v.	100	10	5	5	3 M/3 F	2 M / 2 F

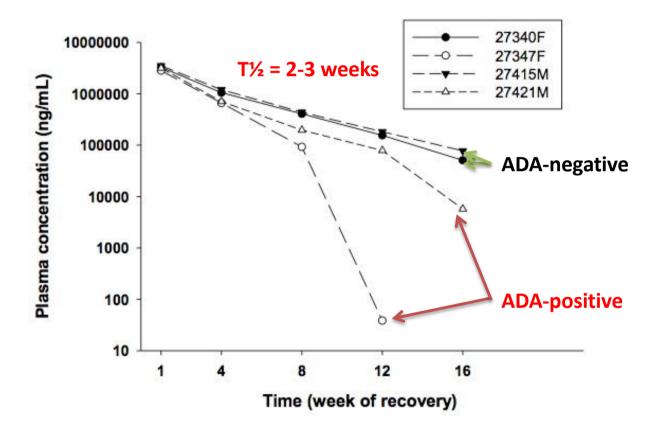
Study design: weekly IV dosing at 5, 25 and 100 mg/kg for 4 weeks

ΡΚ


- 1st, 4th dose profile and peak to trough level at days 8, 15 and 29 during main study
- High dose (100 mg/kg) recovery animals: recovery weeks 1, 4, 8, 12 and 16

IM

- Predose: day 1, 15, 29
- Recovery weeks 4, 8, 12 and 16



No ADA effect on exposure in high dose group following weekly IV doses: "Dosing through"

Long-lasting exposure in 100 mg/kg recovery animals

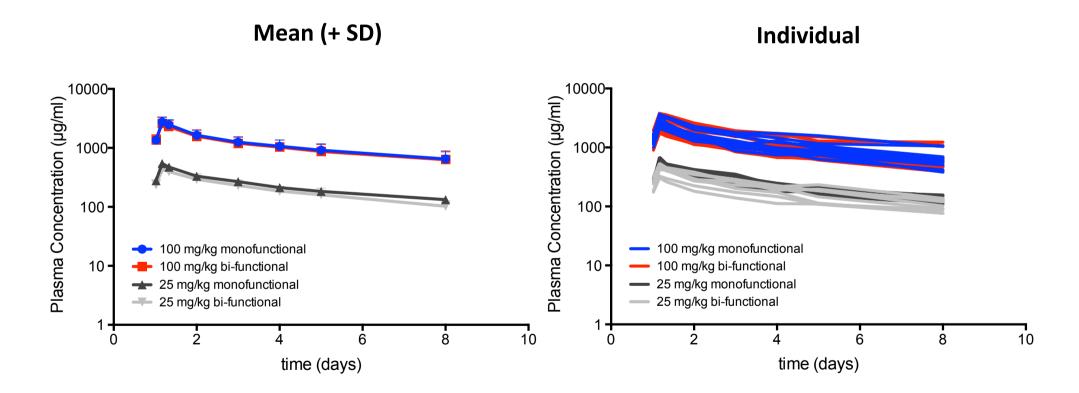
- Recovery period (4-months) could be considered as additional exposure period
- Terminal elimination half-life is 2-3 weeks as described for adalimumab

13-week Tox study (IV) *Study design & current status*

Study design: weekly IV dosing at 25 and 100 mg/kg for 13 weeks

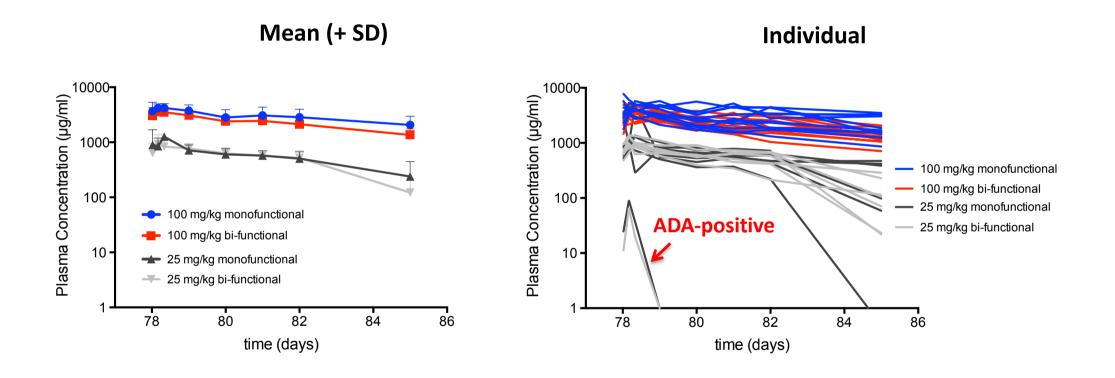
Group	Group description	Dose level (mg/kg)	Dose volume* (mL/kg)	Animals/group		Necropsy after		
number				Male	Female	13 weeks	4-month recovery	
1	Control i.v.	0	2	4	4	2 M / 2 F	2M / 2F	
2	Low - i.v.	25	2	4	4	4 M / 4 F		
3	High – i.v.	100	2	6	6	4 M / 4 F	2M / 2F	

РК

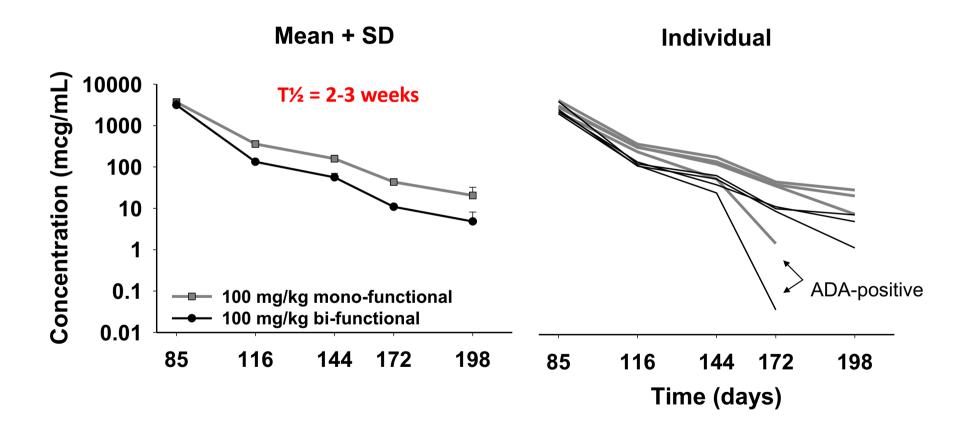

- 1st, 12th dose profile and peak to trough level at days 22, 36, 50, 64, 85 during main study
- High dose (100 mg/kg) recovery animals: recovery weeks 1, 4, 8, 12 and 16

IM

- Predose: day 1, 22, 36, 50, 64 and 85
- Recovery weeks 4, 8, 12 and 16


Same exposure measured by mono- and bifunctional assay 1st dose profile

1st dose profiles derived from 13-week study: low dose = 25 mg/kg (N=8); high dose = 100 mg/kg (N=12)


Same exposure measured by mono- and bifunctional assay 12th dose profile

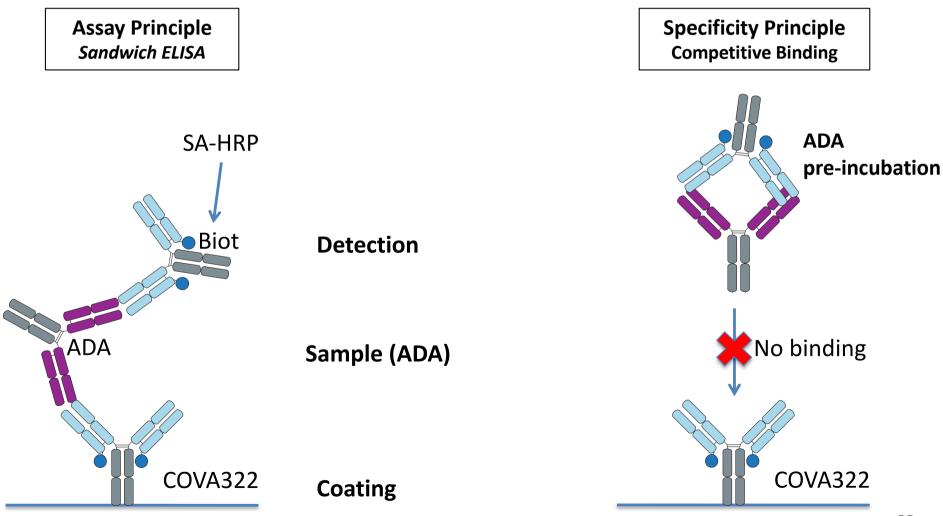
12th dose profiles derived from 13-week study: low dose = 25 mg/kg (N=8); high dose = 100 mg/kg (N=12)

Long-lasting exposure during 16-week recovery period

Almost parallel curve progression with mono/bifunctional assay

Exposure measured by mono- and bifunctional assay grossly comparable

	Parameter	Assay	Group 2 (n=8)* 25 mg/kg		Group 3 (n=12) 100 mg/kg	
			Mean	±SD	Mean	±SD
First dose	AUC(1-8d) (µg.h/mL)	mono-	39000	3900	193000	45300
		bi-	33200	7050	185000	53200
	Fold difference (mono- versus bi-functional assay)		1.17		1.04	
			Mean	±SD	Mean	±SD
Last dose	AUC(78-85d) (µg.h/mL)	mono-	92500	26400	493000	150000
		bi-	88500	20500	385000	90100
	Fold difference (mono- versus bi-functional assay)		1.05		1.28	
					Group 3 (n=3)	
					Mean	±SD
Recovery	AUC(inf) (recovery) (µg.h/mL)	mono-			1780000	338000
		bi-			1310000	376000
	Fold difference (mono- versus bi-functional assay)				1.38	



Specificity assessment of Anti-drug-antibodies (ADA) against COVA322

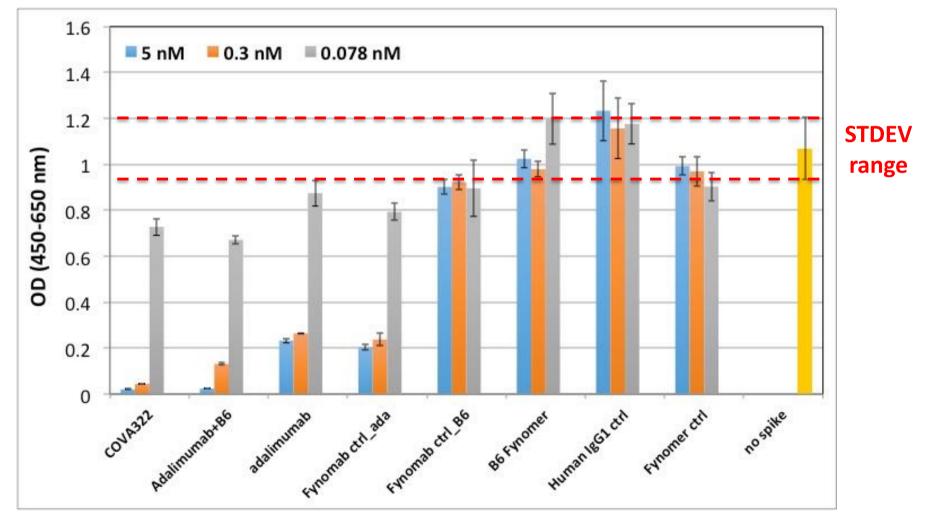
- Assay principle to assess ADA specificity
- Positive control serum and assay reagents
- Results and preliminary conclusions

Assay principle to dissect Anti-drug-antibody (ADA) specificity*

*Protocol adapted from Hart et al., 2011

Different reagents utilized to evaluate whether COVA322specific ADAs are directed against adalimumab backbone, Fynomer entity or linker structure

Positive control:


• Monkeys **subcutaneously immunized** (4xq2w) with COVA322 (100 μg) formulated in Montanide ISA (adjuvant formulation) to generate high ADA titer (1:100 000)

Reagents used for competitive binding analyses:

- COVA322
- Adalimumab (TNF-specific human IgG1 backbone of COVA322)
- **B6 Fynomer** (IL-17-specific Fynomer entity of COVA322)
- Fynomer control (Fyn SH3 wildtype Fynomer) and Human IgG1 control
- **Fynomab control_ada** (adalimumab backbone, same linker and same domain arrangement as COVA322 but wildtype Fynomer)
- **Fynomab control_B6** (B6 Fynomer, same linker and same domain arrangement as COVA322 but human IgG1 control backbone)

ADAs are predominantly directed against the adalimumab backbone

Conclusions ADA specificity

- ADAs derived from immunized Cynomolgus monkeys (positive control) are predominantly directed against adalimumab backbone
- The ADA titer against the B6 Fynomer entity of COVA322 is low in the immunized monkeys
- There are no ADAs present that recognize the wildtype Fyn SH3 domain (origin of Fynomer technology)

Overall, no indication that COVA322 has different PK characteristics as compared to adalimumab

- Dose proportional PK (Cmax and AUC) following intravenous administration
- IgG-like PK comparable to that of adalimumab (e.g. terminal disposition halflife = 2-3 weeks as described for adalimumab)
- Exposure measured by mono- and bifunctional assay considered similar given the assay variability
- No indication for meaningful Fynomer degradation
- Immunogenicity incidence considered in a similar range to that of adalimumab

Acknowledgements

Discovery team

Simon Brack Michela Silacci Isabella Attinger Wenjuan Zha Ulrike von der Bey Susann König-Friedrich Roger Santimaria Irene Zbinden

Development team

Mathias Locher Wibke Lembke Tim Kästner

> Consultants Jennifer Sims Sarah Taplin Jennifer Rojko

Questions???

