

A framework for immunogenicity data integration and prediction: Applying mathematical modeling to immunogenicity of biopharmaceuticals

> Xiaoying Chen, <u>Timothy Hickling</u>, Paolo Vicini PDM-NBE, Pfizer, USA

New technologies for immunogenicity assays/prediction European Immunogenicity Platform February 23-25, 2015

This document provides an outline of a presentation and is incomplete without the accompanying oral commentary and discussion. Conclusions and/ or potential strategies contained herein are NOT necessarily endorsed by Pfizer management. Any implied strategy herein would be subject to management, regulatory and legal review and approval before implementation.

VORLDWIDE RESEARCH & DEVELOPMENT

Complexity of Immunogenicity

immune status

Current progress

- Many technology platforms are developed for early immunogenicity risk assessment
 - In silico prediction tools
 - T-epitope-MHC binding assays
 - In vitro cell assays
 - Animal models 🐧

- However, these platforms usually look at only one or two risk factors at a time
 - Lack of information integration
 - Difficult to intuitively interpret
 - Hard to directly correlate with end point (immunogenicity rate, ADA response, etc)

Reconnecting with Systems Biology: Immune Response Dynamics

WORLDWIDE RESEARCH & DEVELOPMENT

The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. Palsson S, Hickling TP, Bradshaw-Pierce EL, Zager M, Jooss K, O'Brien PJ, Spilker ME, Palsson BO, Vicini P. BMC Syst Biol. 2013 Sep 28;7:95.

Our Working Hypothesis To Understand Immunogenicity

- A mathematical model that describes the key underlying mechanisms for immunogenicity could:
 - Integrate information from various sources;
 - Generate simulations or predictions that can be subjected to experimental validation;
 - May help meet the challenge to predict human immunogenicity
 - Clinical ADA incidence and loss of efficacy
 - Early differentiation between leads

Chen X, Hickling T, Vicini P. A Mechanistic, Multi-Scale Mathematical Model of Immunogenicity for Therapeutic Proteins [Part 1 and 2]. Clinical Pharmacology and Therapeutics: Pharmacometrics and Systems Pharmacology

Mechanistic model – cellular level

WORLDWIDE RESEARCH & DEVELOPMENT

Mechanistic model – subcellular level

Antigen presentation in mature dendritic cells

Multi-scale mechanistic model

Case study 1: Model validation/fitting using mouse studies with ovalbumin challenge

Simulation process: from one subject to a population

Simulate immune response for a population

Case Study Adalimumab: Simulating 1000 patients

Stratify the patients according to their epitope-MHC (ET-MHC) binding pairs

WORLDWIDE RESEARCH & DEVELOPMENT

Simulated immunogenicity incidence

Above: Time course of the development of ADA in 1000 virtual patients.

Assumed thresholds for ADA+:

- Absolute ADA concentration > 250 ng/mL
- Molar ratio of ADA over Ag > 1 for drug tolerance

Impact of trial size on immunogenicity incidence estimation

Trial size	Low (95% CI)	High (95% Cl)	Range
50	62.4 %	88.2 %	25.9 %
100	67.6 %	83.2 %	15.5 %
200	69.1 %	81.5 %	12.4 %

100 random trials with the specified trial size were simulated; each circle represents the simulated immunogenicity incidence for one trial.

Simulated reduction in drug exposure due to ADA generation

Time course of the reduction in drug exposure in the 1000 virtual patients. The percentage of patients with 2, 5, 10, 20, and 50 fold reduction in mAb trough concentration was plotted.

ADA response correlations (sensitivity analysis): Crucial measurements from ex vivo and in vitro assays

Naive B cell frequency (per million)

WORLDWIDE RESEARCH & DEVELOPMENT

Summary

- Model output for ADA incidence and magnitude is reliant on T cell epitopes
 - Consistent with requirement of T help for class switch/high expression
- Several assay formats enable risk assessment for T epitopes
 - In silico
 - In vitro binding assays
 - *Ex vivo* activation assays

 Current forecasts for immunogenicity incidence and impact can be made, though a truly predictive model will likely require more extensive data for integration and a broad range of therapeutics for validation

Acknowledgements

- Xiaoying Chen
 - Model design and implementation, simulation running, refinement
- Liusong Yin
 - Model extension and simulation
- Paolo Vicini
 - Model design, refinement
- Contributions to Modeling, Immunology and PK/PD
 - Mary Spilker
 - Michael Zager
 - Bonnie Rup

