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Complexity of Immunogenicity
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Current progress

+ Many technology platforms are developed for early immunogenicity risk
assessment

— In silico prediction tools
— T-epitope-MHC binding assays
— Invitro cell assays 80

— Animal models

However, these platforms usually look at only one or two risk factors at
a time

— Lack of information integration
— Difficult to intuitively interpret
— Hard to directly correlate with end point (immunogenicity rate, ADA response, etc)
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Reconnecting with Systems Biology:
Immune Response Dynamics
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The development of a fully-integrated immune response model (FIRM) simulator

of the immune response through integration of multiple subset models. Palsson S,
WORLDWIDE RESEARCH & DEVELOPMENT  Hickling TP, Bradshaw-Pierce EL, Zager M, Jooss K, O'Brien PJ, Spilker ME,

Palsson BO, Vicini P. BMC Syst Biol. 2013 Sep 28;7:95.



Our Working Hypothesis To Understand

Immunogenicity

* A mathematical model that describes the key
underlying mechanisms for immunogenicity could:

* Integrate information from various sources;

* Generate simulations or predictions that can be
subjected to experimental validation;

- May help meet the challenge to predict human
Immunogenicity
* Clinical ADA incidence and loss of efficacy
- Early differentiation between leads

Chen X, Hickling T, Vicini P. A Mechanistic, Multi-Scale Mathematical Model of Immunogenicity
for Therapeutic Proteins [Part 1 and 2]. Clinical Pharmacology and Therapeutics:
Pharmacometrics and Systems Pharmacology
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Mechanistic model — cellular level
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Mechanistic model — subcellular level

Antigen presentation in mature dendritic cells
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Multi-scale mechanistic model
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Case study 1: Model validation/fitting using mouse

studies with ovalbumin challenge
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Simulation process: from one subject to a

population
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Case Study Adalimumab:

Simulating 1000 patients

Stratify the patients according to their epitope-MHC (ET-MHC) binding pairs

[ADA] time course in groups
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Simulated immunogenicity incidence
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Above: Time course of the development of ADA in 1000 virtual patients.

Assumed thresholds for ADA+:

= Absolute ADA concentration > 250 ng/mL
» Molar ratio of ADA over Ag > 1 for drug tolerance
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Impact of trial size on immunogenicity

incidence estimation
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Simulated reduction in drug exposure due to

ADA generation

Time course of the reduction in drug exposure in the 1000 virtual patients. The percentage of

patients with 2, 5, 10, 20, and 50 fold reduction in mAb trough concentration was plotted.
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ADA response correlations (sensitivity analysis):

Crucial measurements from ex vivo and in vitro assays

Naive T cell number Naive B cell number
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Summary

* Model output for ADA incidence and magnitude is relianton T
cell epitopes

— Consistent with requirement of T help for class switch/high
expression

« Several assay formats enable risk assessment for T epitopes

— In silico @

— In vitro binding assays

% [t
— Ex vivo activation assays 80

« Current forecasts for immunogenicity incidence and impact can
be made, though a truly predictive model will likely require
more extensive data for integration and a broad range of
therapeutics for validation
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