Increase of drug tolerance An alternative to acid dissociation

Jad Zoghbi Bioanalytical Sciences, CLS Sanofi, Framingham, MA

PandA method publication

Journal of Immunological Methods 426 (2015) 62-69

A breakthrough novel method to resolve the drug and target interference problem in immunogenicity assays

Jad Zoghbi *, Yuanxin Xu, Ryan Grabert, Valerie Theobald, Susan Richards

Clinical Laboratory Sciences, DSAR Sanofi, Framingham, MA, USA

Parts of this slide deck have been presented at the 9th WRIB in Miami, Florida on April 16th, 2015

Potential Effect of Antibody Response

Safety Considerations

- Risk for hypersensitivity reactions
- Potential for immune complex disease
- Efficacy Considerations
 - Antibodies may bind to drug and alter the pharmacokinetics
 - Antibodies may alter the biodistribution of the drug
 - Antibodies may bind to (or near) the active site of a drug and inhibit its activity
 - Antibodies may bind in a way that interferes with the drug binding to its receptor or ligand

Challenges in immunogenicity assays

- Biological matrix interference in detection and quantitation immunoassays remains a major challenge in the field of bioanalysis.
- Circulating drug or target may interfere with the detection of anti-drug antibodies (ADA) causing false negative (from drug) or false positive results (from target)
- Drug target, or ADA may interfere with quantitation of drug levels in PK/TK analysis.
- Monoclonal antibody drug interference, especially for human IgG4 drugs, presents an additional challenge for ADA analysis due to its longer half-life and higher dose and waiting for drug clearance is not always an acceptable solution.
- Bridging immunogenicity assays are typically used but remain susceptible to endogenous drug interference.
- Methods that use acid dissociation in bridging assays or Solid phase extraction with acid dissociation (SPEAD) or an Affinity Capture Elution Assay (ACE), have limited success due to the re-association of drug and ADA upon pH neutralization.

Decision making logistics

What is the interference?

- Specific: Drug, endogenous target, ADA to previous treatment with similar drugs, similar drugs, etc.
- Non-specific: RF, human serum proteins (IgM, IgG, albumin, etc.), disease specific interference factors, etc.
- Increase or decrease of signal?
- Can the interference be reduced (or eliminated)
 - No: Still need to understand it for better data reporting and interpretation
 - Yes: What to do and how to do it?

Technology advancement to reduce matrix interference by improving sensitivities

- What do vendors say (or don't say)?
 - What do users say?
- Some of the more mature platforms
 - MSD
 - Plasmon Resonance (Biacore, Octet)
 - Gyrolab[™]
- Emerging technologies, what is the user experience? (Sensitivity and specificity)
 - The Singulex[®] Erenna [®]
 - Quanterix's SiMoa ™
 - NPX4000 Nanoparticles (ANP Technologies)
 - AQI Diagnostic's Ig PLEXTM
 - Genalyte's Maverick[™]
- Improving sensitivity is not so ideal especially when ADA detection ends up in low ng/mL or even pg/mL levels causing higher incidence of positivity and titers.

What we know around dealing with interferences

- Is "Dilution the Solution to Pollution"?
 - Use of sample dilution (high MRD) to solve matrix interference may sometimes negatively impact assay sensitivity
 - Dilution effect for matrix interference vs. specific analyte may not go parallel (although the desired effect is to dilute interference faster than specific signal)
- Acid dissociation
 - Acid may alter analyte (and/or binding reagent) structure
 - Under neutralizing assay condition, matrix effect may reappear
- Extraction (enrichment) of target analyte
 - Extraction efficiency should be examined
 - Impact on assay throughput needs to be assessed
- Depletion or competition of unwanted interference factors
 - Evaluation of target analyte recovery is important

Key concepts for our new method

- Use what we learned from past experiences
- Understand why some described methods do not work that great
- If you can't beat them, join them: use interference to your advantage

Case studies outline

- Description and data from traditional methods
- Feasibility data shown for 2 monoclonal antibody therapeutics
 - Drug tolerance improvement for a humanized IgG1 (Drug A)
 - Proof of principle done for a new method needed for Drug B with its own challenges
 - Drug tolerance and Target interference reduction for a full human IgG4 (Drug B)

ECL Bridging Assays

ECL Bridging Assay without Acid Dissociation

- Strong dose response for ADA detection in the absence of drug.
- Inhibition is seen with as low as 1 µg/mL of Drug with percent recoveries around 10% at the 125 ng/mL of ADA.
- The assay sensitivity was reduced from 15 ng/mL in the absence of drug to 342 ng/mL with 1 μg/mL of drug and to 5143 ng/mL in the presence of 100 μg/mL of drug.

ECL Bridging Assay with Acid Dissociation

- Similar dose response for ADA detection in the absence of drug as the bridging assay without acid
- Percent recoveries are acceptable with 1 μg/mL of Drug but reduced to 35% at the 125 ng/mL of ADA with 10 μg/mL of Drug.
- The assay sensitivity was maintained for the 1 and 10 µg/mL of drug at around 15 ng/mL and reduced to 262 ng/mL in the presence of 100 µg/mL of drug.

Principle of the PandA method

- Various methods have been used with limited success to address circulating drug interference with the detection of anti-drug antibodies (ADA).
- The PandA method is effective at solving the interference problems caused by drug or target in ADA detection assays based on the following steps:
 - Addition of excess drug material to form drug/ADA complexes.
 - Precipitate those complexes containing total ADA (using PEG)
 - PEG has been introduced as a fractional precipitating agent by Polson et al. (1964)
 - The larger the molecules the lower concentration of PEG is needed
 - Coating of reconstituted precipitate in an acidic solution on a high bind carbon plate with a large capacity to prevent reformation of ADA-drug complexes.
 - Specific detection of the total ADA levels using SulfoTag conjugated drug with an ECL output.

Precipitation and Acid dissociation (PandA) Method

PandA method

- An acceptable dose response was observed for ADA detection in the absence or presence of drug in the samples.
- In most instances, the percent recoveries remained acceptable between 80-120% regardless of the drug amount present.
- The assay detection sensitivity was maintained at 9-14 ng/mL despite drug present at 100 µg/mL which is 3-4 fold higher than the expected Cmax for the therapeutic.

Assay Sensitivity Comparison

	Assay Sensitivity ng/mL		
Drug present	Bridging Assay without Acid	Bridging Assay with Acid	PandA
µg/mL	Dissociation	Dissociation	Method
0	15	15	10
1	342	8	13
10	393	16	9
100	5143	262	14

- The PandA method maintained the assay sensitivity in the bridging assays.
- In the traditional assay, sensitivity is affected at low concentrations of drug.
- The PandA method not only improved detection at high concentrations of drug but maintained sensitivity at the same levels in the presence of high amount of drug.

Dose response/capacity assessment

- Affinity purified rabbit anti-drug at concentrations ranging from 100 µg/mL to 100 ng/mL were prepared in pooled normal human sera and run in the method.
- This data indicates a dose dependent response and the absence of a hook effect or plate saturation.
- This data suggest that this method is feasible for detection of high titer samples.

Drug B

- Drug B is a full human IgG4 that neutralizes a soluble cytokine binding to its cell surface receptor in the target tissue for a fibrosis indication.
- It presents a specific challenge in the MSD bridging assay with acid dissociation since the target for Drug B changes from a monomer to a dimer at low pH causing false positive results.
- The dimerization effect is seen in 100% of normal serum samples and disease baseline samples in the MSD bridging assay with acid dissociation.
- IgG4 monoclonal: documented exchange of IgG half molecules or arm switching (described in IgG4 breaks all the rules (Albersee et.al, Immunology 2002, 105- 9-12)
 - Exchange of IgG half molecules (arm switching)

Population distributions in different methods

Results were comparable between the ECL bridging without acid treatment and PandA method while the acid treatment resulted in higher S/B levels for the majority of the samples tested suggesting interference from drug target due to the dimerization effect at low pH

Sensitivity and Drug Tolerance Drug B

Conclusions

- The challenges of analytical interferences in immunoassays (or ligand binding assays) has long been recognized as an unmet need
- Over the years, many scientists have published techniques proven useful to overcome some of these interferences with varying success rate
- We described a novel method that has shown significant improvement for ADA detection in the presence of excess drug
- We have provided two immunogenicity case studies to demonstrate its utility
- Broader applications should be explored and method optimized accordingly
- Applications include PK assays, CIC, etc.

Acknowledgment

- Mary Brock
- Susan Richards
- Allyson Hatton (Legal)
- Alison Schroeer (Biomedical Media Services)

Thank you for your attention!

