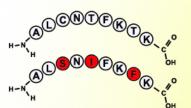
European Immunogenicity Platform Immunogenicity of BiopharmaceuticalsVilamoura, Portugal

February 24, 2016

Jack A. Ragheb M.D. Ph.D.


Senior Medical Fellow in Immunology Global Patient Safety Eli Lilly Co Indianapolis, IN Attending Physician NIH Clinical Center Bethesda, MD

Factors Affecting the Immune Response

Unknown

Modified from W. Jiskoot

Sequence Variation

Formulation

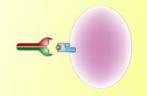
Application route

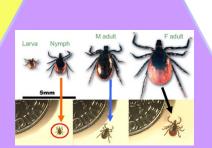
Length of Treatment

Patient Features

Product modification

Contaminants and Impurities


Dose


Nature of Disease

Biological Activity

Concomitant **Medications**

PRODUCT RELATED

Environmental

TREATMENT RELATED

Current Immunogenicity Prediction

In silico

Predicts the presence of a CD4 T cell epitope

In vitro

Provides evidence (proliferation/cytokine production) that the cognate epitope specific CD4 T cells are present

<u>Neither</u>

Predicts if there is an orthologous B cell epitope or anything about the myriad of other factors that impact immunogenicity

Current Immunogenicity Prediction

In vivo veritas

However

- Animals recognize human sequences as "foreign" thus current models are not predictive of the human immune response
- However, animal studies may have comparative utility
- Only clinical studies accurately reflect immunogenicity
- New models?

Something Closer to the Truth...? The Humanized Mouse Model

Humanized Mouse Models

- A. Transgenic Models
 - 1. Conventional
 - 2. Knock-In
 - 3. BAC/YAC
- **B. Hematopoietic Systems**
 - 1. Hu-PBL-SCID
 - 2. Hu-HSC-SCID
 - 3. Hu-BLT-SCID
- C. Limitations and Potential Solutions

Humanized Mouse Models Transgenic Systems (1)

A transgenic (tg) animals' immune system is tolerant to the human transgene product

However:

- Responses are influenced by the mouse strain
- Immune recognition and responses are murine, not human
- Not predictive, but a useful tool for testing product attributes
- Three Basic Variations of the Transgenic System
 - Conventional
 - Knock-In
 - BAC/YAC

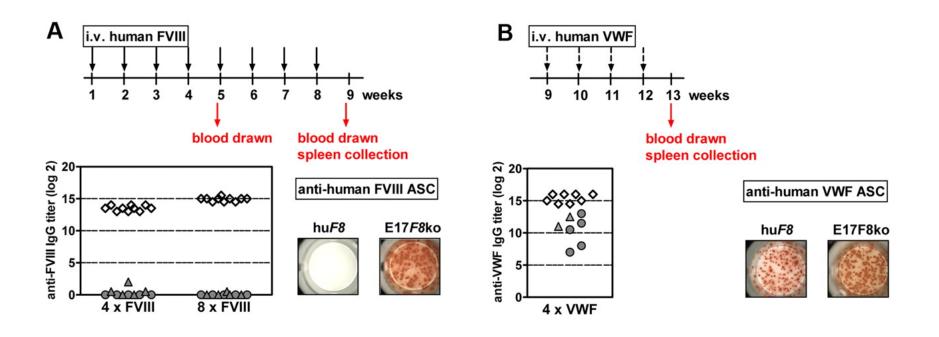
Humanized Mouse Models Transgenic Systems (2)

Conventional Transgenics

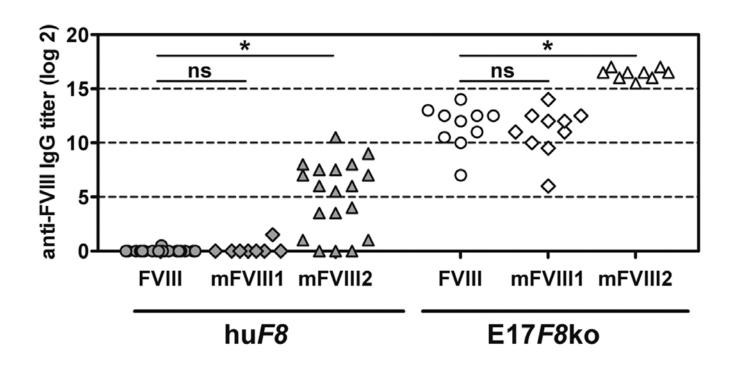
- Murine homolog usually present
- Gene expression is controlled by tg P/E
- may be one or many copies of the gene
- the same gene copy number may ≠ same amount of protein
 - this may impact the level of tolerance

Knock-In Transgenics

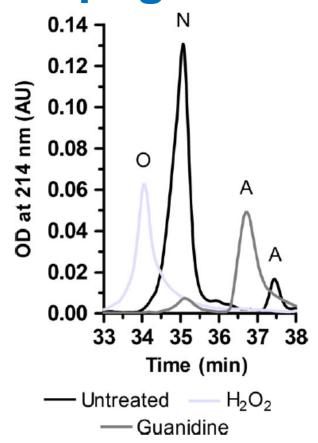
- Murine homolog deleted/inactivated
- May be homozygous or hemizygous
- Gene expression is controlled by P/E of murine homolog
- Usually reflects mu gene expression

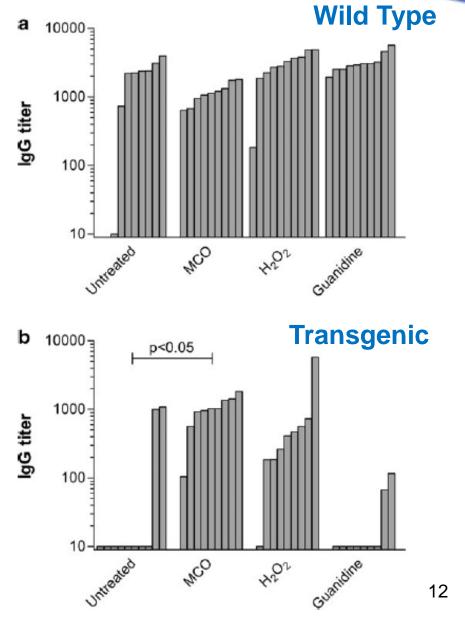

Humanized Mouse Models Transgenic Systems (3)

BAC/YAC Transgenic

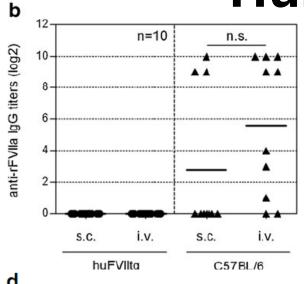

Instead of a single gene, a large chromosomal segment(s) is transferred

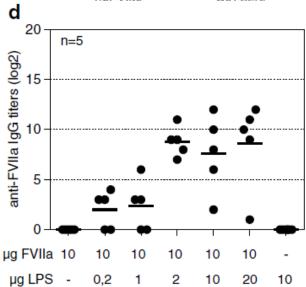
- Murine homolog usually present (may also be deleted)
- Usually gene expression is controlled by native human P/E
- Usually has one copy of the gene
- More likely to reflect human pattern of gene expression

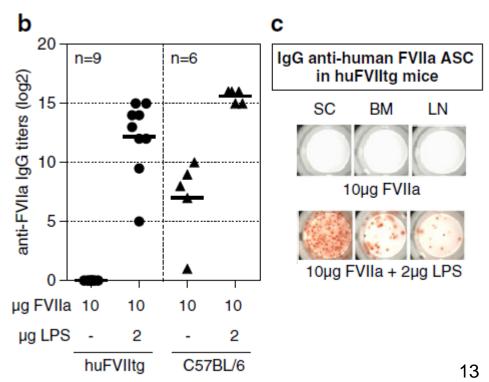

Humanized Mouse Models FVIII Transgenic Mouse exhibit Ag specific tolerance



Humanized Mouse Models FVIII Transgenic Mouse modified FVIII breaks tolerance


Stressed Protein Breaks Tolerance in IFN- β tg Mice




M. van Beers et al. Pharm Res (2011) 28:2393-2402

Humanized Mouse Models

FVIIa Transgenic Mouse PAMPs Break Tolerance

Humanized Mouse Models Hematopoietic Systems

- A mouse reconstituted with human hematopoietic cells (and tissues)
- Confers ability to make human-specific immune responses to pharmaceuticals and/or infectious agents
- Cannot be made genetically (e.g. knock-in)

Humanized Mouse Models Hematopoietic Systems Mice with a Human Immune System

Requirements:

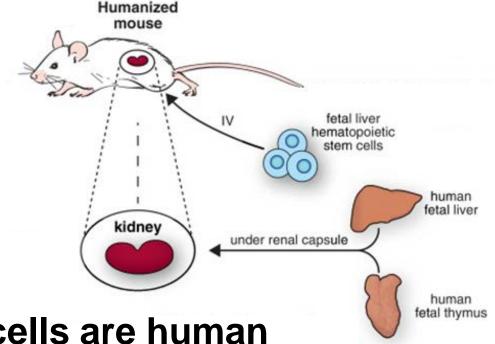
- Immune deficient mouse that will not reject implanted/transplanted tissues and/or cells
- Human cells and/or tissues, e.g.
 - Hematopoietic stem cells (HSC)
 - Fetal liver
 - Cord blood
 - Peripheral blood
 - Bone Marrow
 - > Fetal thymus/liver

Human Hematopoietic Mouse Models

- Hu-PBL-SCID: scid mice injected with human peripheral blood mononuclear cells (PBMC)
- Hu-HSC-SCID: scid mice that have been sublethally irradiated and injected with CD34+ hematopoietic stem cells (HSC)
- Hu-BLT-SCID: Hu-HSC-SCID mice that have also been engrafted with autologous human thymus

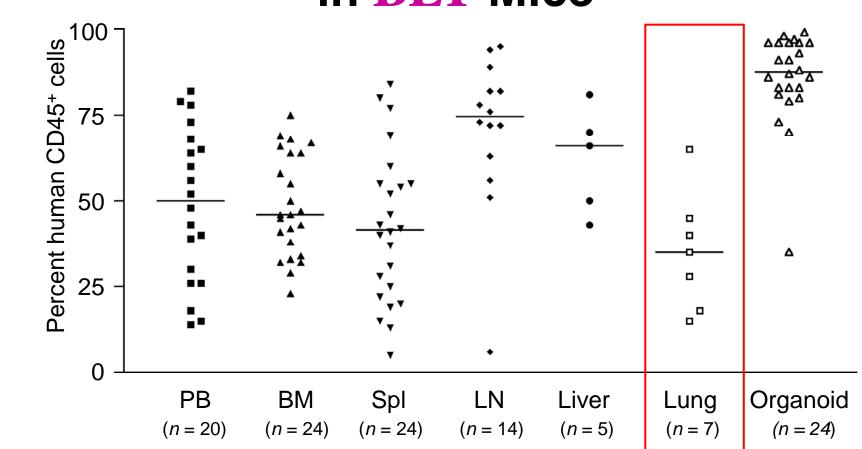
Human Hematopoietic Mouse Models

- Hu-PBL-SCID: scid mice injected with human peripheral blood mononuclear cells (PBMC)
- Hu-HSC-SCID: scid mice that have been sublethally irradiated and injected with CD34+ hematopoietic stem cells (HSC)
- Hu-BLT-SCID: Hu-HSC-SCID mice that have also been engrafted with autologous human thymus

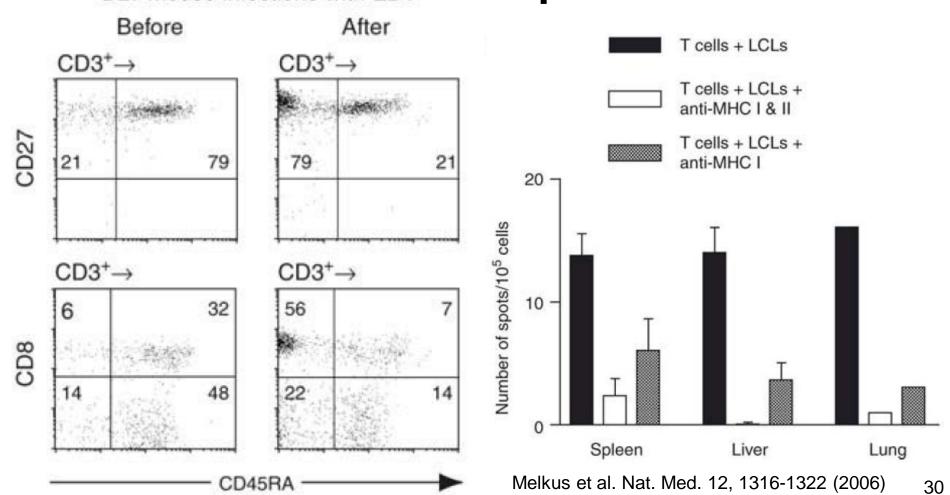

Human Hematopoietic Mouse Models Hu-HSC-SCID

- Hu T cell development in the mouse thymus
 - Immune recognition is mouse (H2), not human, and suboptimal
 - No GVHD (predicted)
 - However, hu T cells would recognize nonhematopoietic human proteins as "foreign"
 - Capable of H2 restricted effector responses (e.g cytokines) that are human

Human Hematopoietic Mouse Models


- Hu-PBL-SCID: scid mice injected with human peripheral blood mononuclear cells (PBMC)
- Hu-HSC-SCID: scid mice that have been sublethally irradiated and injected with CD34+ hematopoietic stem cells (HSC)
- Hu-BLT-SCID: Hu-HSC-SCID mice that have also been engrafted with autologous human thymus

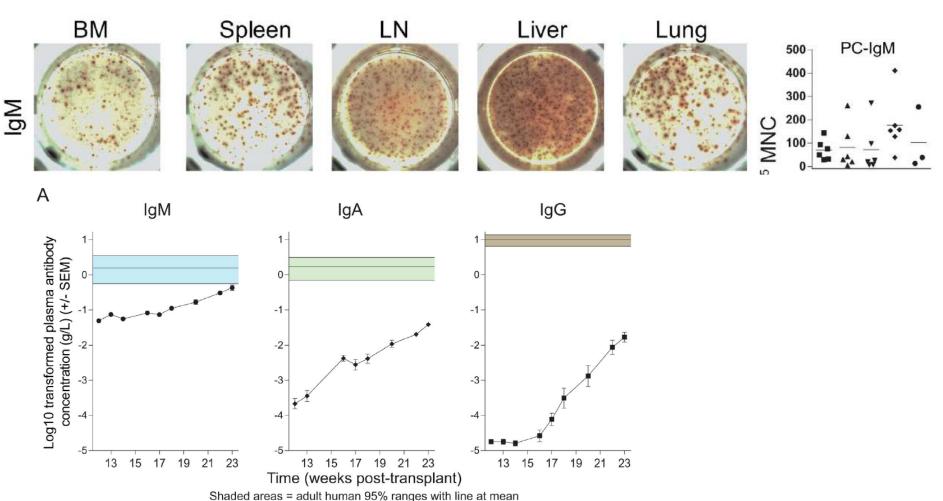
Humanized Mouse Models: BLT



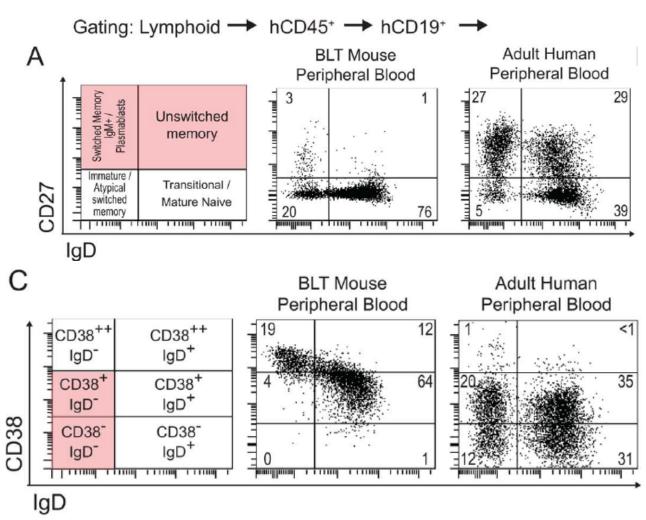
- Immune cells are human
- Unlike Hu-HSC-SCID
 - Immune recognition and responses are human
 - Immune system is tolerant to most human proteins

Systemic Human Reconstitution in **BLT** Mice

HLA Restricted EBV Specific T cell BLT mouse infections with EBV Responses in BLT Mice



Do BLT Mice Mimic the Clinical Immunogenicity Seen with IFNβ?


Numerous clinical studies have shown IFNβ-1b products to be more immunogenic than IFNβ-1a products

IFNβ type	IFNβ-1a	IFNβ-1b
Production Method	CHO cells	E. coli
Glycosolation	Yes	No
Amino Acid Sequence	Same	Different
Aggregation	Low	High
Dosing	1X/wk	3X/wk

Limited Ig Class Switching

Limited B cell Maturation

Overcoming the Limitations of Hu-mu Models

- Hu-PBL-SCID: scid mice injected with human peripheral blood mononuclear cells (PBMC)
- Hu-HSC-SCID: scid mice that have been sublethally irradiated and injected with CD34+ hematopoietic stem cells (HSC)
- Hu-BLT-SCID: Hu-HSC-SCID mice that have also been engrafted with autologous human thymus

Challenges & Potential Solutions

- 2. GVHD in PBMC and BLT models
 - a. H2 cl I and cl II ko
 - b. C57BL/6 CD47 ko BLT
- 3. Lack of HLA molecules for T cell education and/or peripheral effector functions
 - a. HLA tg-matched/unmatched HSC?
- 4. Low levels of Ig and class switched Ig
 - a. Cytokines e.g. NSG-Tg(BLyS)?
 - b. BM stromal elements?
 - c. Environmental Factors e.g. microbiota?

Challenges & Potential Solutions

- 1. High Level Barrier facility; Labor Intensive Surgery and limited donor tissues
- 2. GVHD in PBMC and BLT models
 - a. H2 cl I and cl II ko
 - b. C57BL/6 CD47 kg BLT
- 3. Lack of HLA molecules for T cell education and/or peripheral effector functions
 - a. Tsplt of HLA matched target tissue
 - b. HLA tg-matched/unmatched HSC?

The BLT Mouse Team

FDA

Xiaohong Li, MD

Jill Ascher, VMD

Vera Brinks

Anuja Patnaik

Marian Major

Giovanna Fantoni

Maryna Eichelberger

Kristina Howard

DVM Staff

UNC - Chapel Hill

Victor Garcia-Martinez

Scripps

Bruce Torbett

Jackson Laboratory

NIH

Tom Nutman, MD, Ph.D. Helton Santiago, MD, Ph.D. Bruno Andrade, MD, Ph. Phil McCoy

