

Assay Strategies to Analyse New Antibody Therapeutics in Preclinical and Clinical Studies

Kay Stubenrauch

Roche Innovation Center Munich, Pharma Research & Early Development pRED, Pharmaceutical Sciences, Large Molecule Bioanalytical R&D

9th Open EIP Scientific Symposium – Lisbon, November 14-16, 2017

Bioanalytical Assays in Biologics Development The Interplay between Drug, Target and ADAs

- Analytes are not independent from each other
- Interactions have to be considered for
 - Drug exposure assessment
 - Immunogenicity testing
 - Target engagement
 - ... many more

PK-Assays What are we analyzing?

Nomenclature	Description
Total	The total fraction of the drug
Target-binding competent	Is able to bind to its desired binding partner in an assay
Active	Able to bind its target in vivo (in contrast to total) Can be very challenging (disturbance of equilibrium during sample preparation/analysis)
Free	Is not bound to any other protein

PK-Assay Options for Antibody Therapeutics *Quantification of Active/Target Binding Competent Drug*

Disturbance of equilibrium during sample preparation/analysis to be considered for accurate active drug quantification
Staack et. al., Bioanalysis. 6(4), 485-496 (2014)

PK-Assay Options for Antibody Therapeutics *Quantification of Total Drug*

"Active" vs. "Total" Drug Exposure When and why does it matter?

ADA-dependent loss of active exposure (vs. maintained total drug exposure)

- The interference of soluble targets, extracellular domain of the target receptors, or ADA on the PK assay need to be considered
- The validity of safety (and efficacy) studies relies upon the demonstration of active drug exposure

ADA Responses are Polyclonal and can be Diverse e.g. different Ig isotypes, directed against different epitopes

Main Goals for Immunogenicity Testing of New Antibody Therapeutics::

- Detection of whole ADA responses
- ADA characterization, e.g. domain specificity

Current ADA Assay Gold Standard: Bridging Assay

Example: Bispecific Antibody

Appropriate assay to detect nearly all ADA isotypes and any ADA specificity:

- Both sets of CDRs ("antigen binging regions")
- Engineered part
- Human IgG framework

Issue for ADA Bridging Assays: Drug Interference

Analytical consequence

Masking of ADA by Drug can result in ADA False-Negatives

Principles to Overcome Drug Interference Issues

- High assay sensitivity for free ADA
- Shift of the equilibrium towards free ADA
- Dissociation of ADA-drug complexes by sample pre-treatment
- ADA enrichment//separation/purification

and

Alternative Assay Formats

Drug-ADA Immune Complex Assays Inherently resistant to drug and target interference

Two assay variants allow:

- Detection of *in vivo* formed immune complexes (drug bound ADA only, magenta) and
- 2. By *ex vivo* spiking of drug into samples, **all ADA detected** (*in vitro* formed complexes, red)

Roche

Drug-ADA Immune Complex Assays

For drugs with PG modified Fc – also applicable in clinical studies

- Inherent resistance against residual drug
- FcγRI detection provides proof, that signal is indeed caused by an antibody

Drug-ADA Immune Complex Assays For drugs with PG modified Fc – also applicable in clinical studies

Pro: Highly drug-tolerant, appropriate assay format to detect ADA against FcR-effector function suppressed antibody drugs (with engineered Fc part)

Con: ADA of other isotypes than IgG 1 (e.g. IgM are not detected and require additional assays

ADA Characterization: Domain Competition Assays

Immunogenicity Testing for Bifunctional Molecules Domain Competition Assay

Advantages

- Method similar to standard confirmation assay
- Require single drug domains only (not conjugated with label)
- Less effort for reagent and assay development
- Relatively fast and easy to implement

Challenges

- Production of single drug domains
- Determination of specific confirmation CPs for each domain required
- Higher intrinsic variability (result generated from 2 data points)
- In case of multi-specific ADA responses: Risk to miss low levels of ADAs

Solution May be the approach of choice for early development

ADA Characterization: Domain Detection Assays

TIC, targeted immunocytokine; Cy, cytokine

Stubenrauch et al., JPBA. 114:296-304 (2015)

Roche

Immunogenicity Testing for Bifunctional Molecules Domain Detection Assay

Advantages

- May be superior for detecting minor ADA fractions in multi-specific ADA responses
- Allows titer assessment of each ADA specificity (each domain)
- Better data quality since analytical result is based on a single readout instead of two for DCAs

Challenges

- More extensive reagent development
- Labelling of drug fragments may increase risk of conformational changes or epitope masking
- Limited accessibility of small domains immobilized on solid phases
- Separate assays to be established for each domain, incl. assay validation

Solution May be the approach of choice for later development

Bioanalysis of New Antibody Therapeutics Conclusions

- Understand your drug and targets to develop assay strategies that result in relevant data
- Invest the time to generate appropriate reagents well in advance of clinical studies
- Depending on molecule design, new antibody therapeutics require a bit or significantly more bioanalytical investment
- New antibody therapeutics enable new options for disease treatment and also new chances for bioanalysis

Acknowledgement

pRED Pharmaceutical Sciences, Large Molecule Bioanalytics at Roche Innovation Centers Munich and Basel

Uwe Wessels, Markus Zadak, Christian Kuenzel, Klaus Mackeben Olaf Broders Cordula Jany Afsaneh Abdolzade-Bavil & team Gregor Lotz & team Sabine Lohmann & team Thomas Emrich & team Martin Schaefer & team Gregor Jordan & team Janine Tittel & team Julia Heinrich Roland Staack

Roche

Eginhard Schick and team Herbert Birnboeck and BAM team

Lisa Benincosa Thomas Singer

Several LMR, PS, RPD and DTA-Teams and many more

Doing now what patients need next

ADA Assay Formats Different to Bridging Assays e.g. suitable for Fc engineered antibody drugs

Pro: Highly drug-tolerant, appropriate assay format to detect ADA against FcR-effector function suppressed antibody drugs (with engineered Fc part):

Con: ADA of other isotypes than IgG 1, e.g. IgM, are not detected and require additional assays

Doing now what patients need next