Pre-existing antibodies and the multi-tiered assay approach

Experience with the FDA

Madeleine Dahlbäck PhD, Senior Scientist

Immunogenicity Assessment Novo Nordisk A/S Denmark

EIP-ABIRISK conference, Lisbon 2017

Outline

Regulatory expectations

- 2 Pre-existing insulin antibodies in diabetic patients
- 3 Strategies for handling pre-existing antibodies
- 4 Proposal "false positives in screening and removal by confirmation"
- 5 Summary

Regulatory expectations - multi-tiered assay

Regulatory expectations – evaluate cut points

- The sponsor should evaluate the appropriateness of the cut points selected in the study using the baseline samples from the study
 - Recommended that means and variances of the individual sera from the validation and at baseline from the clinical study are compared using statistics
 - If there is a significant difference in the variance, then a study-specific cut point is needed

Focus of my talk

• How to determine an appropriate screening cut point when there are a lot of pre-existing antibodies?

Outline

- 1 Regulatory expectations
- **2 Pre-existing insulin antibodies in diabetic patients**
- 3 Strategies for handling pre-existing antibodies
- 4 Proposal "false positives in screening and removal by confirmation"
- 5 Summary

Pre-existing insulin antibodies in diabetic patients

Trial	Patients	Pre-dose samples (baseline) with insulin antibodies
А	T1D	YES > 70%
В	T2D	YES > 50%

T1D - Type 1	diabotos
T2D = Type 1 T2D = Type 2	diabetes
12D = 1ypc 2	ulabetes

Pre-existing insulin antibodies in diabetic patients

Trial	Patients	Pre-dose samples (baseline) with insulin antibodies
А	T1D	YES > 70%
В	T2D	YES > 50%
С	Insulin-naïve T2D	NO - expected to be antibody negative because patients have not received exogenous insulin

Pre-existing insulin antibodies in diabetic patients

Trial	Patients	Pre-dose samples (baseline) with insulin antibodies	
А	T1D	YES > 70%	
В	T2D	YES > 50%	
С	Insulin-naïve T2D	NO - expected to be antibody negative because patients have not received exogenous insulin	
D	Insulin-naïve T1D	<i>Does not exist because all diagnosed T1D patients require insulin treatment and pre-existing insulin autoantibodies is part of the disease symptoms</i>	поч

How to determine cut points based on baseline samples?

 The high frequency of pre-existing insulin antibodies in diabetic patients makes it difficult to set the cut point

Distribution analysis

How to define which samples are truly negative for antibodies?

Outline

- 1 Regulatory expectations
- 2 Pre-existing insulin antibodies in diabetic patients
- **3** Strategies for handling pre-existing antibodies
- 4 Proposal "false positives in screening and removal by confirmation"
- 5 Summary

Strategies for handling pre-existing antibodies

Creation of a pseudo antibody negative population

- Spike drug into samples to abolish the antibody signal
- Use these values for cut point determination

Removal of antibody positive samples using Gaussian mixture modelling

- Use 2 population modelling to identify which baseline samples are of lowest antibody reactivity
- Use these samples for cut point determination

Removal of antibody positive samples until a normally distributed antibody negative subpopulation is identified

Use remaining antibody negative samples for cut point determination

Removal of antibody positive samples by identifying them through

- A characterization assay, e.g. immunodepletion or
- A confirmatory assay
- Use remaining antibody negative samples for cut point determination

Key references: Xue et al. 2017 in publication Kumar et al. 2016 The AAPS Journal DOI: 10.1208/s12248-016-0011-2

Creation of a pseudo antibody negative population

- Challenge: drug-spiked samples give a lower assay signal than un-spiked samples
- Consequence: screening cut point will be set too low

Removal of antibody positive samples using Gaussian modelling

- Challenge: difficult to apply when results are not clearly divided into 2 populations
- Consequence: screening cut point may be set too high

100

Antibody level (%B/T)

Strategies for handling pre-existing antibodies

Outline

- 1 Regulatory expectations
- 2 Pre-existing insulin antibodies in diabetic patients
- 3 Strategies for handling pre-existing antibodies
 - **Proposal "false positives in screening and removal by confirmation"**
- 5 Summary

Available cut point parameters

Assay validation (pre-study)

- Cut points determined using healthy sera
 - Screening assay normalisation factor (NF) used for floating cut point
 - Confirmatory assay fixed cut point

Options when analysing clinical samples (in-study)

- Use validation parameters
 - Screening assay validation NF
 - Have to show appropriateness how? false positive rate
- Use baseline samples for cut point determination
 - How?

confirmatory assay

Evaluation of cut point – "false positives in screening"

¹Shankar et al. 2008. J Pharm Biomed Anal 48(5): 1267-1281. ²Amaravadi et al. 2015. Bioanalysis 7(24), 3107–3124

False positive rate and pre-existing antibodies

Evaluation of cut point – "false positives in screening"

¹Shankar et al. 2008. J Pharm Biomed Anal 48(5): 1267-1281. ²Amaravadi et al. 2015. Bioanalysis 7(24), 3107–3124

Determination of study-specific cut point – "removal by confirmation"

Evaluate the confirmatory results		Determine study-specific screening cut point		Evaluate screening cut point
 Look at confirmatory results for all baseline samples Remove all samples that are confirmed positive 	•	Identify remaining antibody negative samples Dependent on number of negative samples: analyse in 3-6 independent screening assays with 2 analysts	•	Calculate false positive rate based on screening results for the antibody negative samples Target range around 2-11%
	•	Determine study-specific NF and screening cut point		

Clinical cases – "false positives in screening"

Insulin drug	Baseline samples	Baseline samples < screening cut point	Baseline samples ≥ screening cut point and confirmed negative	False positive rate	% pre-existing antibodies
А	512	340	12	3.4% 🗸	31%
В	526	253	41	13.9% 🗸	44%

Clinical cases – "removal by confirmation"

Insulin drug	Baseline samples	Baseline samples ≥ confirmatory cut point	Baseline samples < confirmatory cut point
А	512	204	308
В	526	269	257

Outline

- 1 Regulatory expectations
- 2 Pre-existing insulin antibodies in diabetic patients
- 3 Strategies for handling pre-existing antibodies
- 4 Proposal "false positives in screening and removal by confirmation"
- 5 Summary

Summary

The proposed strategy meet the overall regulatory expectations

- Multi-tiered assay approach
- Evaluation of cut points
 - Appropriateness of validation NF is evaluated by the false positive rate
 - If study-specific NF is required, antibody negative baseline samples may be identified using the confirmatory results
- Clinical impact?

Acknowledgement

- Helene Solberg, Team Manager
- Lisbeth Bjerring Jensen, Scientific Director
- Louise Jørgensen, Immunogenicity Specialist
- Michael Back Dalgaard, Senior Scientist
- Tony O'Connor, Senior Scientist

• All colleagues in the Department of Immunogenicity Assessment

Questions and feedback

Suggestions and input from the regulators and industry

are highly appreciated!

