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Introduction

What is the main focus of the talk?

= An objective: clinical Prediction
- To predict clinical immunogenicity of a drug based on
patient-related high-dimensional data (genomic/patient’s
genetic makeup).

- To build a rule based on what we observed from clinical
studies for future risk prediction.

= A Framework for achieving this objective: Statistical
predictive models
- We consider that what is observed Y (outcome) can be
modeled as the combination of systematic known factors X
(predictors) and random effects «.

- To provide prediction rules with good prediction accuracy.



Predict or Explain ?

Prediction is not Explanation

= Prediction study
- We want firstly to accurately predict an outcome or that
something will (not) occur and secondly explain/interpret why
it will (not) happen
- Main focus: To predict (predictive accuracy)
- Data >> Model

= Explanatory study
- We want firstly to test some hypotheses about the disease
process (mainly an hypothesis regarding a relationship
between a phenotype and a bio-clinical factor).
- Main focus: To explain (understand)
- Test (Hypothesis Testing) & Estimation (Quantify the relationship)
- Model >> Data



Predict or Explain ?

Prediction is not Explanation (2)

= New shift towards prediction
- During the 20th century with the tremendous development of
modern statistics, the statistical methodology has been oriented
towards explanatory goal (testing or estimation approaches).
- The new century is heading towards predictive inference.

= Prediction vs. Explanation
- It is often (wrongly) assumed that models with high explanatory
power (Cox model) inherently possess predictive power. Explanatory
models are not well-designed for interactions, non-linearity.
- Evaluation criteria are different: Explanatory power # Prediction
accuracy (p-value # predictive values).
- Prediction and interpretability are usually in conflict.

= Clinical applications require a good balance between
prediction accuracy and interpretability



Predict or Explain ?

What do we need for prediction studies?

Main (predictive) objective
Selected population

Outcome: continuous (prediction), discrete (discrimination),
time-to-event

Explanatory variables (predictors): Use to construct the rule
Prediction horizon (e.g. 1-year)
Predictive model (ML approaches)

Strategies 2-steps: Developmental step (build and evaluate -
accuracy measure) & External validation step (generalizability)



Predict or Explain ?

Prediction with High Dimensional data

Data can be summarized as Matrix: n= subjects (row) p: factors (col)
- Matrix of the predictors (X,xp)
- Vector of the outcomes (phenotype) Y,x1

X ... Xip
Xm Xnp
Y = [yn }’1p:|

High dimensionality: Mainly fat matrices: p =>> n



Predict or Explain ?

Prediction with High Dimensional data (2)

= Prediction objective: Build a decision rule X ng ¥ = ® (X)

- Use the predictors (X), Define the rule (®), Evaluate the
accuracy of the rule (difference between Y and Y)

- Supervised methods (prediction or classification)

= Challenges: Fat matrices p >> n
- Reduction of the dimensionality; Selection of the variables.
- Various frameworks: Regularization, random forests, neural

networks.



Clinical prediction

What are the specificity of clinical immunogenicity

= Aim & challenges
- To predict the immunogenicity of a drug (ADA)
- Take into account that immunogenicity is a dynamic event
which is monitored within a window of time.

= Time-to-event data
- Take into account for censored data (incomplete
information)
If a patient is free of ADA at 6 months but lost to follow-up
after = Use the information of being free of ADA up to 6
months
- The information is X = min(T,C) and § =1if X =T and 6 =0
otherwise (censored information)



Clinical prediction

Time-to-event analysis

= Survival modeling
- Survival function:

S(t)=Pr(T >1t)
- Hazard risk:
)\(t) = limgsso Pr(t<T<6t:‘5t|T>t)
- Cox model (multiplicative):
Mt X) = Ao (t) x e®X)

- Other models: Accelerated failure times,...

» Predictive tools adapted to time-to-event data
- Compound predictor and regularized methods
- Neural networks

- Regression trees & Random Forests



Clinical prediction

Compound predictor and regularized methods

Compound predictor
Mostly relying on Cox model.
Linear combination of weighted genomic measurements (risk score)
CD(X) = ?:1 W,'X,' o
with A(t; X) = Ao(t) x P
- If ®(X) increases then the probability of the event increases
- Ad-hoc separation bad/good prognostic groups

- Two-steps: Feature selection (most significant) and prediction

Regularized predictor
- Selection and prediction in one-step (Lasso and Elastic-net)
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Compound predictor and regularized methods (2)

= Advantages
Straightforward to understand, to communicate (weights;
parameters); to explain. s = (0.251) + gene, + (—0.232) + genes + ... + (0.08) + geney
Regularization avoid overfitting

= Drawbacks
Simplified model: Linear model

WX+ WX,

Performs poorly when there are complex non-linear relationships (..

gene*gene interaction)



Clinical prediction

Machine learning (ML) approaches

o Compound (regularized) predictors have been widely used in
the last decade for time-to-event prediction.

e Well-known for not being suited for coping with complex
higher-order interactions with high-dimensional data.

e ML approaches
- Artificial Neural Networks
- Random forests



Artificial neural networks
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Artificial neural networks (2)

= Advantages
- Powerful nonlinear modelization

- High predictive accuracy



Clinical prediction

Artificial neural networks (3)

= Drawbacks
- Low level of interpretability (black-box).
- Require a very large amount of data (training samples).
- Use mainly for n >> p.
- Computationally intensive to train. Require expertise to tune
the architecture and hyperparameters.
- Prone to overfitting.
- Need more research works for being use in clinical medicine
with time-to-event outcomes.



Random Forests

Tree-based models & Random Forests

e Tree based model (recursive partitioning methodology)
for taking into account gene X gene interaction

= Main principle: To decompose the data space (explanatory
variables) recursively into more homogeneous areas (with
respect to the main outcome) in a tree-structured fashion.

Whole population

SNPyoy § AA, AB SNP,o| = BB

SNPgy = AA  SNPgq 1 AB, BB SNP.,| = BB SNP.., § AB, AA

SNPs{ = BB SNPg, + AA, AB

ot e
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Random Forests

Tree-based models (2)

= Advantages
- Powerful nonlinear modelization
- High level of interpretability (set of rules)
- Can be extended for time-to-event data: Survival trees (create
homogeneous groups with respect to the probability of the
occurence of ADA).



Random Forests

Tree-based models (3)

Drawbacks

- Prone to instability.
- A small change in the data set can result in a very different series

of splits
- Variable selection and prediction somewhat precarious !

Solution: = Create multiple predictors (with bootstrapped
samples) and Aggregate the predictions (Random Forets)
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Random Forests
= Main principle: Build many trees (with bootstrapped samples)

Whole population

Random Forest

i
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Random Forests (2)

= Provide accu racy estimation: The Brier Score is a summary of the prediction error by

integrating over time

htheag

Reaiity
forthe patient

For one patient

L pesctontorthe pasine

== The final prediction of a forest is the average of the predictions of the trees
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Random Forests (3)

= Prediction use: Bagged survival trees can be used for immunogenicity prediction of a new patient

Fora new patient L

Baseline predicfion

Prediction for the patient

0.4




Selection

L PrOVide inte rpretative tOOlS: The loss of interpretability associated with the forest is

compensated by a ranking of variable importance (selection).
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Conclusion

Conclusion

= Clinical prediction for imunogenicity

- Prediction is a hot topic

- When high dimensional data with complex interactions are
expected ML approches can be used

- Prediction for clinical use should strike a good balance between
accuracy and interpretability.

- RF offers a good trade-off.

- NN are newcomers and still black-box.

= Limitations and Extensions

-There is no one-size-fits-all predictive tool.
- Methods should be tailored to specific problems.



Thank you for your attention
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