

"Human Immune System" mouse models for preclinical risk assessment

Nicolas LEGRAND, Ph.D.

Director – Immunology

European Immunogenicity Platform 27-Feb-2019

Personalized Genome Engineering Service

Research model creation services at genOway

Rodent & cell models

> 2000 catalog models for target & compound specificity validation
 > 2000 tailor-made models
 Unique and broad IP platform
 Worldwide partnerships (academia & pharmaceutical/biotech companies)

Cytokine-producing cell reporter models

Gene-humanized models with enhanced translatability to human

- PK and PD studies (Hu-FcRn/Hu-albumin)
- IgE mediated inflammation and allergies (Hu-IgE/Hu-FcεR1)
- inflammation & auto-immune disease (Hu-CD4, Hu-TNF-α,...)
- Immune checkpoint and co-stimulatory molecules (OX40, PD-1, GITR,...)

<u>Cell-humanized models</u> for prospective access to human cells in vivo

- Human hematopoietic cells (PBMC, <u>CD34⁺ HSPC</u>,...)
- ± human tumor cells

Construction of "Human Immune System" mice

Immuno-deficient mouse strains

Timeline | Important events in the development of humanized mice

Shultz (2007), Nat. Rev. Immunol., 7:118

The BRGS mouse strain

www.genoway.com

A simple strategy for HIS mouse generation

Human hematopoietic reconstitution (multi-lineage; multi-organ)

HSC = Hematopoietic Stem Cells i.h. = intra-hepatic HIS = Human Immune System

High human reconstitution level in BRGS-HIS mice

✓ HIS mice are routinely generated in females only;

✓ >95% of the HIS mice contain >30% hCD45⁺ leucocytes in blood at 12wks of age;

Restored human leucocyte homeostasis in BRGS mice

Total hCD45⁺ (fold increase over control BRG-HIS mice)

- ✓ BM: 2.5-fold
- ✓ Thymus: 2.0-fold
- ✓ Spleen: 7.5-fold
- ✓ Lymph nodes: 5-fold

- Improved engraftment and accumulation of human hematopoietic progenitor cells (hHPC)
- ✓ Enhanced accumulation of all human hematopoietic subsets, in particular T & NK cells
- ✓ Selective improvement of T cell homeostasis

Legrand (2011), PNAS, 108:13224

BRGSF-HIS mice for enhanced human DC density

Tilting the balance towards higher density of human DC in HIS mice

- ✓ the cytokine FLT3L/FLK2L is crucial for steady-state dendritic cell development;
- ✓ mouse and human FLT3L are highly homologous (cross-reactive);
- ✓ FLK2^{-/-} mice show reduced numbers of mouse DC;
- "human DC boost on demand"
 hFLT3L injection into HIS mice increases
 human DC numbers

Li (2016), <u>EJI</u>, 46:1291

Human leukocyte reconstitution – optimization strategies

Identification of limiting factors for human leukocyte homeostasis in BRG-HIS mice:

✓ Human cytokine bio-availability:

IL-7 (thymopoiesis; $\alpha\beta$ T cells)

IL-15/IL-15R α (thymopoiesis; memory $\alpha\beta$ T4/T8; T $\gamma\delta$; NK)

TPO (hHSC)

IL-3/GM-CSF; M-CSF (myeloid cells)

FLT3-L (cDC; pDC; mono/granulocytes; NK)

- ✓ Human dendritic cell density ($\alpha\beta$ T cells)
- ✓ Human MHC expression ($\alpha\beta$ T cells)

✓ Compatible CD47/SIRP α signaling axis (mouse phagocyte tolerance)

all human cell subsets benefit from this single modification

Legrand (2009), Cell Host & Microbe, 6:5 Huntington (2009) JEM, 206:25 van Lent (2009), J. Immunol., 183:7645 Chen (2009), PNAS, 106:21783 Strowig (2009), JEM, 206:1423 Shultz (2010), PNAS, 107:13022 O'Connell (2010), PLOS ONE, 5:e12009 Rongvaux (2011), PNAS, 108:2378 Willinger (2011), PNAS, 108:2390 Huntington (2011), PNAS, 108:6217 Legrand (2011), PNAS, 108:13224 Strowig (2011), PNAS, 108:13218 Huntington (2011), EJI, 41:2883 Suzuki (2012), Int. Immunol, 24:243 Li (2013), J. Immunol., 191:3192 Ding (2014), J. Immunol., 192:1982 Li (2016), Eur. J. Immunol., 46:1291

A flexible tool for research & industrial applications

Human immune responses in HIS mice

- commercial TT vaccine, 1/10 of the human dose i.p. per injection
 (1 immunization + 2 boosts)
- ✓ analysis 10 days after last boost (5-6 wks after onset of vaccination)

	M1	M2	M3	M4	M5	human adults, n=5 mean (range)
age at start of vaccination (weeks)	12	17	17	15	12	-
human CD45* spleen cells (%)	85	12	38	25.5	77	-
human CD19 ⁺ spleen cells (%)	37	2	9	13	38	-
human CD3* spleen cells (%)	46	8.5	22.3	8.1	6.5	-
Total IgG (µg/ml)	45	500	80	100	15	8600 (7500-10000)
TT specific IgG (µg/ml)	0.1	ND	ND	0.3	0.2	33 (16-75)
TT specific lgG/total lgG	1:450	-	-	1:333	1:75	1:260

Traggiai (2004), <u>Science</u>, 304:104

- ✓ weak responses
 ~0.2-1% specific IgG levels of vaccinated humans
- ✓ low efficiency of i.p. route 5-10% responder HIS mice

poor anti-HIV B cell response (IgG in 1/25 YU-2/R5 infected animals)

- ✓ no/weak anti-HIV T cell response
- ✓ similar results with other model pathogens e.g. measles; influenza; yellow fever

www.genoway.com

Analysis of B cell responses at clonal level

From primary B cells to human monoclonal antibodies

www.genoway.com

Kwakkenbos & Diehl (2009), Nat.Med., 16:123

Vaccination scheme

Immunological parameters after vaccination

<u>Spleen</u>	Human cells (CD45 ⁺)						
Groups	Total	B cells (CD19 ⁺)	T cells (CD3 ⁺) Absolute number (×10 ⁶)				
	Absolute number (×10 ⁶)	Absolute number (×10 ⁶)					
Controls (n = 10)	0.72±0.27	0.25±0.16	0.43±0.15				
Vaccinated (n=34)	3.63±0.75 **	2.03±0.46**	1.45±0.41 <i>n.s.</i>				
Responders (n = 14)	5.63±1.54 **	3.06±0.96**	2.44±0.87 *				
non-responders (n = 20)	2.06±0.45*	1.28±0.35**	0.59±0.20 <i>n.s.</i>				

Plasma (Ag-specific lg)

Plasma (total lg)

Antigen-specific B cell clones generated from HIS mice

All clones show low levels of hypersomatic mutations

IgM V_H amino-acid sequence (HBsAg-specific B cell clones)

CLONES	FR1	CDR1	FR2	CDR2		FR3	CDR3	FR4
<u>VH3-73</u>	EVQLVESGGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	IRSKANSYAT	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	TR	WGQGTLVTVSS
6β2-D4-3	GGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	IRSKANSYAT	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	T <mark>SRKSSSSDY</mark>	WGQGTLVTVSS
6 β1-E3-10	EVQLVESGGGLVQ <mark>P</mark> GGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEW <mark>I</mark> GR	I <mark>G</mark> SKANSYAT	ayaa <mark>p</mark> vk	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	TSRKSSSSDY	WGQGTLVTVSS
3β2- F 2-2	EVQLVESGGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	irsk <mark>p</mark> nsyat	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	TR <mark>LSGRGVDY</mark>	WGQGTLVTVSS
6β2-G11-6	EVQLVESGGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	irskans <mark>y</mark> at	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAV <mark>Y</mark> YC	TR <mark>KSSSSDY</mark>	WGQGTLVTVSS
5β2-D5-5	EVQLVESGGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	IRSKANSYAT	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	TR TYSSSWYFDY	WGQGTLVTVSS
γ5-8	EVQLVESGGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	IRSKANSYAT	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	TR <mark>TYSSSWYFDY</mark>	WGQGTLVTVSS
γ6-7	EVQLVESGGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	IRSKANSYAT	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	TR <mark>RGYYGSGSYYGDY</mark>	WGQGTLVTVSS
5β1-E3-5	EVQLVESGGGLVQPGGSLKLSCAAS	GFTFSGSA	MHWVRQASGKGLEWVGR	IRSKANSYAT	AYAASVK	GRFTISRDDSKNTAYLQMNSLKTEDTAVYYC	TR <mark>RGYYGSGSYYGDY</mark>	WGQGTLVTVSS
<u>VH4-34</u>	QVQLQQWGAGLLKPSETLSLTCAVY	ggsfsgyy	WSWIRQPPGKGLEWIGE	INHSGST	NYNPSLK	SRVTISVDTSKNQFSLKLSSVTAADTAVYYC	AR	WGQGTLVTVSS
2β2-D6-11	QVQLQQWGAGLLKPSETLSL <mark>T</mark> CAVY	ggsfs <mark>v</mark> yy	WSWIRQPPGKGLEWIG <mark>K</mark>	INHSGST	NYNPSLK	SRVTISVDTSKNQFSLKLSSVTAADTAVYYC	AR <mark>GFHY</mark>	WGQGTLVTVSS
<u>VH3-30</u>	QVQLVESGGGVVQPGRSLRLSCAAS	GFTFSSYG	MHWVRQAPGKGLEWVAV	ISYDGSNK	YYADSVK	GRFTISRDNSKNTLYLQMNSLRAEDTAVYYC	AR	WGQGTLVTVSS
3β2-G1-7	QVQLVESGGGVVQPGRSLRLSCAAS	GFTFSSYG	MHWVRQAPGKGLEWVAV	ISYDGSNK	YYADSVK	GRFTISRDNSKNTLYLQMNSLRAEDTAVYYC	A <mark>KAVVDRARDGYNLGY</mark>	WGQGTLVTVSS
γ <mark>6-14</mark>	PGRSLRLSCAAS	GFTFS <mark>T</mark> Y <mark>A</mark>	MHWVRQAPGKGLEWVAV	ISYDGSNK	YYADSVK	GRFTISRDNSKNTLYLQMNSLRAEDTAVYYC	AR <mark>GTYYGSGIGFDY</mark>	WGQGTLVTVSS
<u>VH3-15</u>	EVQLVESGGGLVKPGGSLRLSCAAS	GFTFSNAW	MSWVRQAPGKGLEWVGR	IKSKTDGGTT	DYAAPVK	GRFTISRDDSKNTLYLQMNSLKTEDTAVYYC	TT	WGQGTLVTVSS
2β2-H8-2	EVQLVESGGGLVKPGGSLRLSCAAS	GFTFSNAW	MSWVRQAPGKGLEWVGR	IKSKTDGGTT	DYAAPVK	GRFTISRDDSKNTLYLQMNSLKTEDTAVYYC	LINWGIRD	WGQGTLVTVSS
γ2-15	GSLRLSCAAS	GFTFSNAW	MSWVRQAPGKGLEWVGR	IKSKTDGGTT	DYAAPVK	GRFTISRDDSKNTLYLQMNSLKTEDTAVYYC	LINWGIRD	WGQGTLVTVSS
<u>vh5-51</u>	EVQLVQSGAEVKKPGESLKISCKGS	gysftsyw	IGWVRQMPGKGLEWMGI	IYPGDSDT	RYSPSFQ	GQVTISADKSISTAYLQWSSLKASDTAMYYC	AR	WGQGTLVTVSS
γ1-4	EVQLVQSGAEVKKPGESLKISCKGS	Gysft <mark>t</mark> yw	IGWVRQMPGKGLEWMGI	IYPGDSDT	RYSPSFQ	GQVTISADKSISTAYLQWSSLKASDTAMYYC	Ar <mark>Hseyyydssgyyldy</mark>	WGQGTLVTVSS
<u>VH5-A</u>	EVQLVQSGAEVKKPGESLRISCKGS	GYSFTSYW	ISWVRQMPGKGLEWMGR	IDPSDSYT	NYSPSFQ	GHVTISADKSISTAYLQWSSLKASDTAMYYC	AR	WGQGTLVTVSS
γ6-21	EVQLVQSGAEVKKPGESLRISCK <mark>S</mark> S	GYSFTSYW	ISWVRQMPGKGLEWMGR	IDPSDSYT	<mark>K</mark> YSPSFQ	GHV <mark>II</mark> SADKSISTAYLQWSSLKASDTAMYYC	AR <mark>hlreavadfpmdv</mark>	WG

Human immune responses in HIS mice

Human B cell responses are induced in HIS mice upon vaccination

- ✓ Human B cell responses are induced by various vaccines (OVA; KLH; TT; HBV; Flu)
- ✓ Immunization per i.m. route is more efficient than i.p. route
- ✓ Human antigen-specific B cells can be isolated and cloned from vaccinated HIS mice

 ✓ Optimized HIS mouse models with improved human cell homeostasis & function permit isolation of large numbers of antigen-specific B cell clones (including IgG⁺)
 e.g. in humanized BRGS mice

 The generated mAbs exhibit features of low affinity, close-to-germline antibodies (limited germinal center reaction; limited Ig switch; limited affinity maturation process)

Optimizating immunization strategies

 ✓ Vaccination design (protocols, timing, formulation, adjuvants)

 ✓ Incremental, step-wise optimization of new recipient mouse strains for improved xenograft features (human cell content and function)

 \checkmark Use of exogenous agonists of immune cells during immunization

Vaccination in hDC-boosted BRGSF-HIS mice

- Human antigen-presenting cells might represent a functional bottleneck – human DC boosting strategy?
- ✓ Model antigen: Keyhole Limpet Hemocyanin (~3400 a.a.; ~390kDa) KLH (K) vs. KLH/Alum (K/A)
- Exogenous agonists of immune cells before immunizations: soluble FLT3-L/Fc
 + hydrodynamic delivery of hGM-CSF/hIL-4 encoding DNA plasmids
- ✓ Standardized vaccination design

Di Santo & Mention (2010), patent Chen (2012), <u>J. Immunol.</u>, 189:5223 Ding (2014), <u>J. Immunol</u>., 192:1982 Li (2016), <u>Eur. J. Immunol.</u> 46:1291

Human B cell responses to KLH

ELISA for anti-KLH IgM/G

- ✓ Human IgM responses 83% (20/24) responding animals in KLH-specific IgM ELISA vs. 20-40% w/o immuno-stimulation
- Human IgG responses
 45% (9/20) of the IgM-responder animals also exhibit anti-KLH IgG responses
 vs. almost no detectable IgG w/o immuno
 - stimulation
- ✓ Impact of adjuvant
 No benefit from alum

CT: PBS-injected K: KLH-injected K/A: KLH/alum-injected

Human T cell responses to KLH

- ✓ Human T cell responses
 67% (14/21) of the animals show a T cell response to KLH
 vs. no detectable T cell responses without immuno-stimulation
- MHC restriction of T cell responses
 57% (8/14) of the responder animals show partial HLA class-II restriction (human DC biased?)
 HLA-class-I and mouse MHC restricted responses possible as well

An unprecedented level of human immune responses

Enhancement of human dendritic cell density and maturation status has major functional benefits on human immune responses in HIS mice

- ✓ Screening of candidate vaccines
- ✓ Validation of immuno-modulatory compounds
- ✓ Evaluation of new adjuvants
- ✓ Evaluation of compound immunogenicity
- ✓ Model limitations should be kept in mind…

Human immune responses to tumor cells in HIS mice

- Tumor cell outgrowth
 Tumor cells can be tracked by bioluminescence
- ✓ Human immune cells limit tumor outgrowth

BRGS (non-HIS)

www.genoway.com

BRGS-HIS

BCL/HIS mice for bispecific antibody POC study

 Evaluation of treatment anti-tumor efficacy 14-weeks old BRGS-HIS mice 5x10⁶ Daudi-Luc⁺ cells i.v.

> **Human B cell depletion in blood** * p<0.05; ** p<0.01 (compared to HIS-CT)

Comparison of 3 Bs-mAbs 2 injections (d3/7; 1mg/kg i.v.)

10⁶1

CT: PBS vehicle control

mAb1: human T cell targeting only (monovalent)

<u>mAb2</u>: human T cell + human B cell targeting (bispecific)

mAb3: human B cell targeting only (monovalent)

 Transient B cell depletion activity is observed with the 2 B cell-targeting test products (mAb2 & mAb3)

BCL/HIS mice for bispecific antibody POC study

 Evaluation of treatment anti-tumor efficacy 14-weeks old BRGS-HIS mice 5x10⁶ Daudi-Luc⁺ cells i.v.

Comparison of 3 Bs-mAbs 2 injections (d3/7; 1mg/kg i.v.)

CT: PBS vehicle control

mAb1: human T cell targeting only (monovalent)

<u>mAb2</u>: human T cell + human B cell targeting (bispecific)

mAb3: human B cell targeting only (monovalent)

- Monovalent B cell targeting does not efficiently control tumor outgrowth (mAb3)
- Tumor control is only achieved when human T cells are recruited to the tumor B-cells by the bispecific antibody (mAb2)

Conclusions

Human immune responses in HIS mice

✓ Human dendritic cells (number & maturation status) represent a limitation for the consistent generation of human antigen-specific immune responses in HIS mice

✓ Human B cell responses are induced upon vaccination, but remain weak/rare without immuno-stimulation

✓ Human antigen-specific B cells can be isolated and cloned from vaccinated HIS mice, but the generated mAbs exhibit features of low affinity, close-to-germline antibodies

✓ Human T cell responses are observed in a large majority of human DC-boosted animals

✓ A major field bottleneck has been removed with such an immuno-stimulatory approach

✓ Human immune cells efficiently respond to tumors (allogeneic tissues) and efficiently respond to anti-tumor, mAb-induced effector cell mobilization

Major model improvements over the past 30 years... and still ongoing

- ✓ Standardized HIS mouse production
- ✓ Optimized immuno-deficient mouse models with combined genetic/cellular humanization strategies

✓ Addressing the specific requirements/limitations of each application field e.g. for immunogenicity assessment: expected frequency of response vs. batch size? Immune tolerance for tested products? Genetic variability of human HSC donors? Optimization of vaccination strategies?

"Human Immune System" mouse models for preclinical risk assessment

Nicolas LEGRAND, Ph.D.

Director – Immunology

European Immunogenicity Platform 27-Feb-2019

Personalized Genome Engineering Service