

Simcyp

The development of a quantitative systems pharmacology platform to predict and manage immunogenicity in clinical development

Mario Giorgi, Piet van der Graaf & Andrzej Kierzek Certara QSP EIP, European Immunogenicity Platform, Lisbon, 25th-27th February 2019

Introduction - Biologics

New Chemical Entities and Biologics approved by the FDA in the last two decades

Beatriz G. de la Torre and Fernanado Albericio, Molecules, 2018

Biologics: ~30% of new drug approvals in 2017;

From Biopharma Dive, 2018:

"Making up more than half of the drugs currently in development, the biologics market is forecast to reach **\$399.5 billions by 2025**"

Introduction – Immunogenicity (IG)

Study on 121 approved biologicals products

Adapted from Wang et al., AAPS J., 2016

89% incidence of immunogenicity49% immunogenicity impact on efficacy

IG is mostly tackled preclinically:

- Predicts peptides that bind strongly to major histocompatibility (MHC) II receptors;
- Engineer protein sequences to avoid strong binding.

CERTARA^O

Introduction – Limitation of bio-informatics

Examples of other important factors that could influence IG

CERTARA

Introduction – QSP

Quantitative system pharmacology models (QSP) (Complement bio-informatics)

Genentech A Member of the Roche Group (Kapil Gadkar & Jennifer Rohrs)							
Antibody Drug	# Binding peptides*	# MHC II alleles	% ADA+ Patients				
Bococizumab (Pfizer)	2	12	68% (Ridker, 2017)	\star			
Alirocumab (Regeneron)	1	1	5.1% (Roth, 2017)				
Evolocumab (Amgen)	0	0	0.1% (Henry, 2016)				
GNE anti-PCSK9 (Genentech)	2	8	4% (GENE data*)	\star			

*Based on Phase II clinical study with ~200 subjects

IG QSP Consortium

The Consortium aims to develop the industry-standard quantitative systems pharmacology (QSP) model, coupled to a robust IT platform, to predict and manage IG and guide decision making in drug development.

The QSP Consortium is a tree, where trunk represents biology common to all applications, while branches and leaves represent target specific mechanisms. The Consortium is rooted in QSP Platform.

Overview of IG Simulator

[1] Linzhong et al., AAPS J., 2014; [2] Chen et al., ASCPT, 2014

IG Simulator Application

Simcyp

Simcyp (QSP IG) Version 17 Release 1: Adalimumab_Bartelds_0.003 — 🗖 💌								
File Options Tools View Licensing No	tification	is Help Resources						
Copin Save Clear Simulation Prediction Socilities Fit. Batch MAC Red Sine Reacht Post 5 Scientist View								
Jorkspace -	0	Nen-SR-Adalimumah			emile	VD		
Workspace Adalimumab_Bartelds_0 *		rsp-ob-Adaminanab			9111 W 0	п		
Paralation Win-Win-Win-G	N	Number Of Epitopes 2						
- repeated risk risk risk see	w	leak Binding Constant (nmol/L)		4000				
Substrate Wsp-Wsp-S8-Adali •								
🔊 Inhibitor 1 Wsp-SV-Bupropio * (Epitope 1 Binding Constant	Epitope 2 Binding Constant			
PKPD Types		MHC II Allele	Gene	Unit: nmol/L	Unit: nmol/L			
Parameters 🤣 Profiles		> DR81*04:01	DRB1	82	56.7			
Trial Design	511	DR81*04:03	DR81	52.35	98.57			
		DR81*04:04	DR81	120	25.33			
Phys Chem and Blood Binding	•	DR81*04:07	DR81	83.15	69.44			
Absorption		DR81*04:11	DR81	38.29	67.67			
Distribution		DR81*07:01	DRB1	50	51.33			
		DR81*08:02	DR81	204	194.67			
IMDD =		DR81*08:11	DR81	74.95	4000			
srain		DR81*11:01	DR81	211.33	195.33			
PD Basic 1		DR81*14:04	DRB1	35.8	4000			
Setup		DR81*15:01	DR81	98.67	4000			
Rest of		Rest of DR8	DR81	4000	4000			
% DQ		DQ	DQ	4000	4000	-		

Extrapolation to population with different HLA allele frequencies;

- Personalised & Precision medicine: Prediction of PK and IG for genotyped individual;
- Extrapolation to larger populations. (Phase III, IV);
- IG Management: Extrapolation to different dosing regimes;
- Extrapolation to paediatric population or individual children;
- Extrapolation to disease population;
- Extrapolation to age group;
- Prediction of the effect of co-therapy.

Modular Biological Process Map interface

Modules encapsulate complex mechanisms which are connected to the model through well defined interfaces. This facilitates both visualisation and consortium team development of multiscale mechanistic models.

Connection to Simcyp PBPK model

Specie "Ag" in biological process map is merged with variable "Substrate exogenous plasma concentration" in Simcyp PBPK. The ODE for Simcyp variable is augmented by rate laws of ADA binding and Immune Complex dissociation.

Trial design

11 Simcyp	o (QSP IG) Version 17 Release 1: Adalimumab_Bartelds_0.003	_ 🗆 🗙	👔 Simcyp (QSP IG) Version 17 Release 1: Adalimumab_Bartelds_0.003 – 🗖 💌				
File Options Tools View Licensing Notifications Help Resources File Options Tools View Licensing Notifications Help Resources							
Open Save Clear Simul	ation Prediction Annotation Sensitivity P.E. Batch Real Time	Results Post P. Scientist View	i View Save Clear Simulat	sion Prediction Amodation Sensitivity P.E. Batch Real Time Results Post R. Scientist View			
Workspace - 0 Workspace Adalimumab_Bartelds_0 •	Trial Design	SIM#CYP	Workspace - 0 Workspace Adalimumab_Bartelds_0 •	Trial Design SIM#CYP			
Population Wsp-Wsp-Wsp-Si •	O Population Representative	 Virtual Population 	Population Wsp-Wsp-Wsp-Si •	Substrate Fasted Fa			
Substrate Wsp-Wsp-SB-Adali	Trials Fixed Individual Trial Design 😵		Substrate Wsp-Wsp-SB-Adali V PKPD Types	SC-First Order V Dosing Dose (mg) V 40			
O Profiles	No. of trials 1 No. of subjects in each trial 100	Minimum age (yea Maximum age (yea	Profiles	○ Single Dose Start at 9:00 AM ■ on day 1			
Trial Design	Size 100 Redefine subjects over ti	Proportion of fema me Frequency	Trial Design	 Multiple Dose Number of Doses 79 τ (h) 336 			
Dosing Regimen Sampling Plan	Day Clock Time Duration of study (h)	Start at Gestational Week	Dosing Regimen Sampling Plan	-			
Analytical Error	Start 1 9:00 AM a 26520	10 Fluir	Analytical Error				
Data Anaiysis	End 1106 9:00 AM		Data Anarysis				
				Urai V Dosing Dose (mg) V 130			
				Single Dose Start at 9:00 AM on day 1			
				Multiple Dose Number of Doses 1105 τ (h) 24			
%	۲. II	•	%				

- Simcyp simulator is modularised into System, Compound, Population and Trial design.
- Trial screens specify number of subjects from target Population and dosing regime of the Compound.

Simcyp simulator with Immunogenicity screens

- The compound section of Simcyp biologics model has been expanded to allow input of antigenic peptide binding constants.
- Population section of Simcyp has been expanded to allow input of allele frequencies used to generate MHC II binding constants.

Clinical trial simulation: IG affects PK

Simulation of Adalimumab clinical trial of Bartelds et al., JAMA 2011

By using Bartelds classification criterion

© Copyright 2018 Certara, L.P. All rights reserved.

Clinical trial simulation: IG does not affects PK

Predictions across population groups

Compound X Compound Y % of Maximum ADA+ Patients % of Maximum ADA+ Patients 50 80 45 70 40 ⊠ 35 [%] 60 ~30% ADA+ Patients [0 0 0 05 05 05 ADA+ Patients 30 25 20 -European Pop. 15 North-African Pop. -European Pop. -North-American Pop. 10 North-American Pop. -North-African Pop. -Sout-East-Asia Pop. 10 5 —South East Asia 0 0 20 40 60 80 100 200 300 400 0 0 Weeks Days

Any changes in the PK between North American Pop. and South East Asia pop.?

CERTARA.O

Predictions across population groups

PK differences between North American pop. and South East Asia pop. Generic compound (n=100, Comparison between populations) 14 -ADA- North-American Pop. -- ADA+ (Mid) North-American Pop. Median drug concentration [mg/L] 12 ••• ADA+ (Strong) North-American Pop. ••• ADA+ (Strong) South-East-Asia Pop. 10 - ADA+ (Mid) South-East-Asia Pop. -ADA- South-East-Asia Pop. 8 6 2 0 20 40 60 80 0 100 120 140 160 Weeks

- No differences in ADA- profiles;
- Higher drug concentration (ADA+ strong) at early time points for the North American pop.
- Lower drug concentration (ADA+ mid) for the North American pop.

CERTARA.O

Acknowledgements

- Abbvie lacksquare
- **Astellas**
- **BMS**
- **Genentech/Roche**
- Lilly •
- Pfizer

Certara QSP IG Consortium Team

Science: IG Model development

IT: IG Simulator development

Mario Giorgi

Maciej Swat

Piet van der Graaf

Ben Small

Richard Matthews

CERTARA

@ Copyright 2018 Certata, L.P. All rights reserved.

© Copyright 2018 Certara, L.P. All rights reserved.

Questions?

