

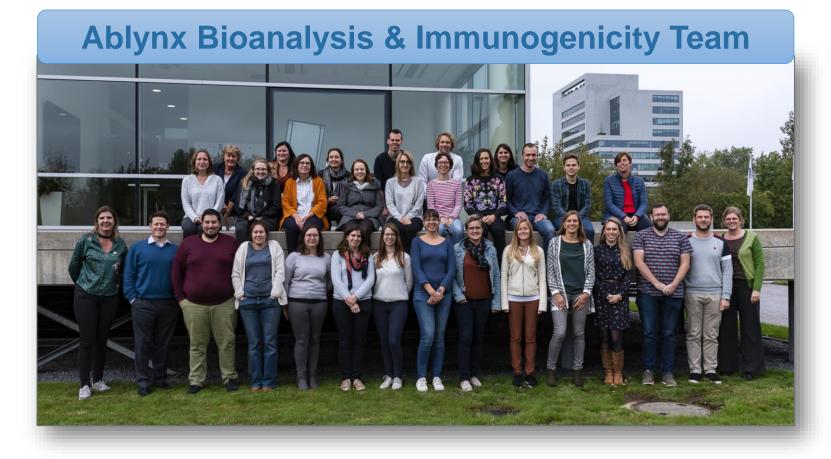
Immunogenicity Testing of Multi-Specific Nanobodies®

Samuel Pine European Immunogenicity Platform February 19, 2020

Acknowledgement to Contributors

First things first!

BAI Current and Former Scientists:

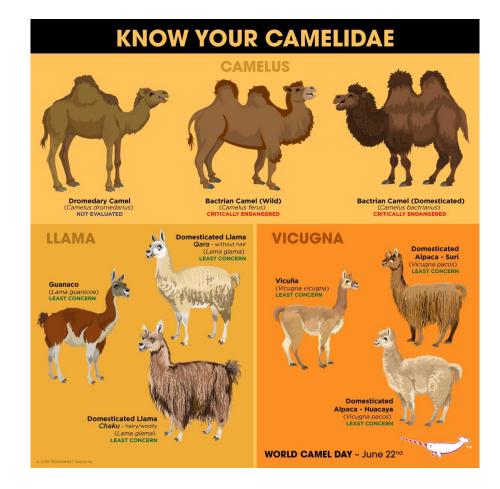

Lieselot Bontinck Benedicte Brackeva Annelies Coddens Griet Conickx Gregory Daelman Robbe D'Hondt Kim Legiest Veerle Snoek Brendy Van Butsel Yana Vandenbossche

• Ablynx

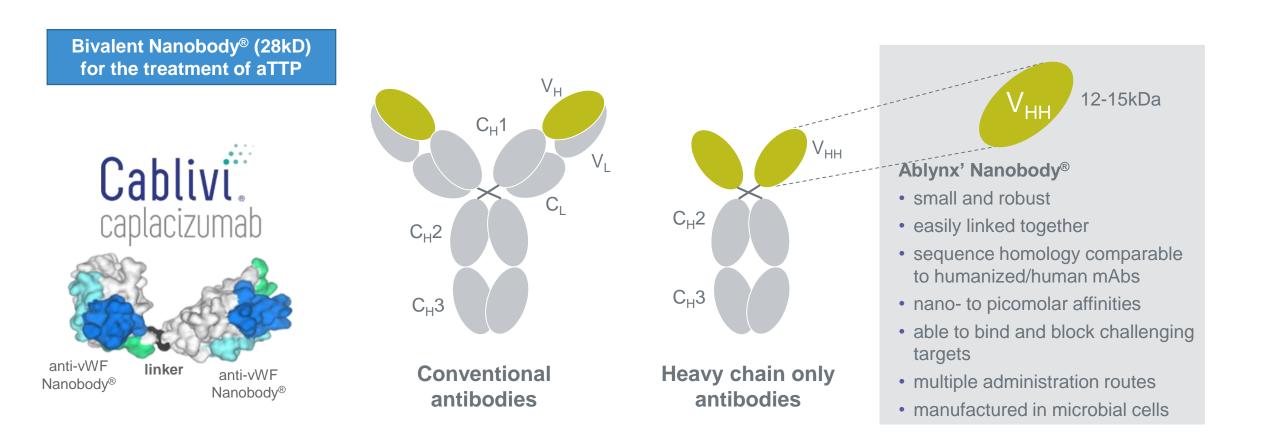
Nanobody Research Platform Clinical Sciences Operations

Sanofi

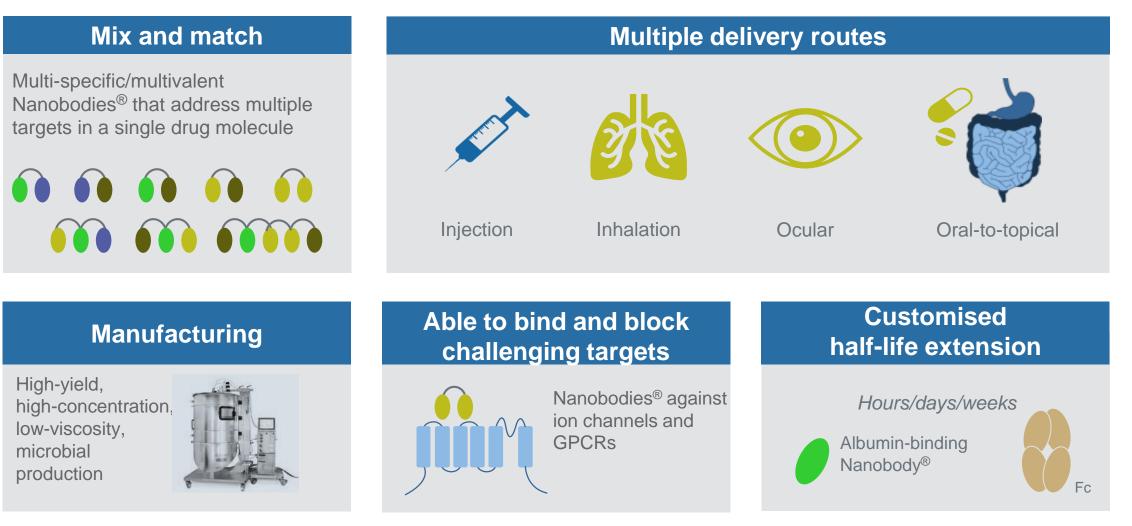
Therapeutic Area Scientists Drug Metabolism & Pharmacokinetics Preclinical Sciences Translational Medicine & Early Development



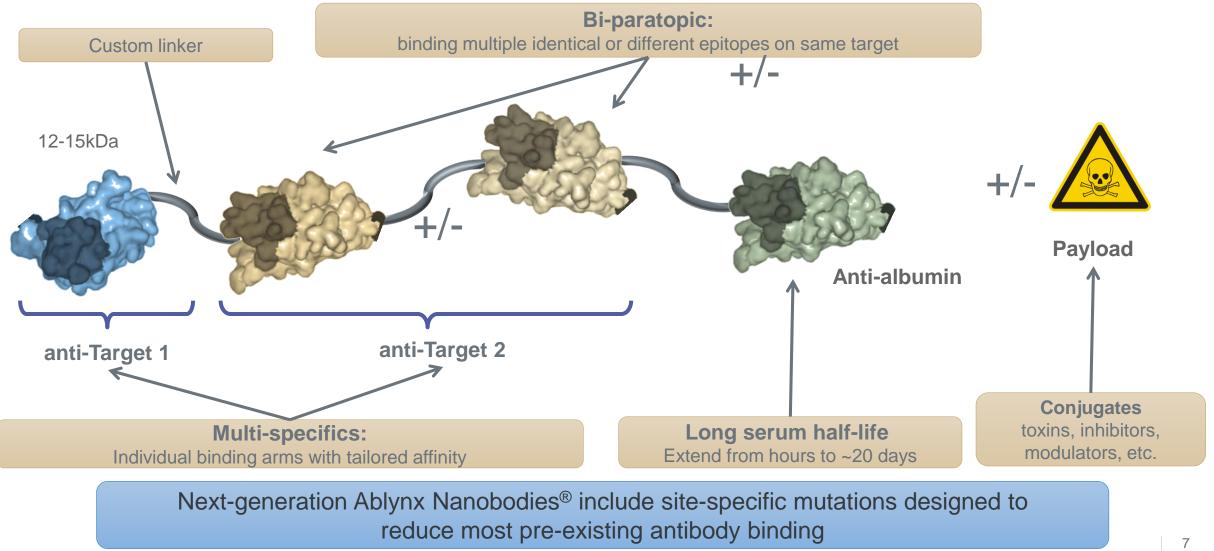
- Multi-specific Nanobodies[®]
- Binding ADA Methods
- ADA Characterization Methods
- Case Study 1 Non-clinical binding ADA & Characterization
- Case Study 2 Clinical characterization assays


- Multi-specific Nanobodies[®]
- Binding ADA Methods
- ADA Characterization Methods
- Case Study 1 Non-clinical binding ADA & Characterization
- Case Study 2 Clinical characterization
 assays

What is a Nanobody[®]?


Antibody-based biotherapeutic from Ablynx

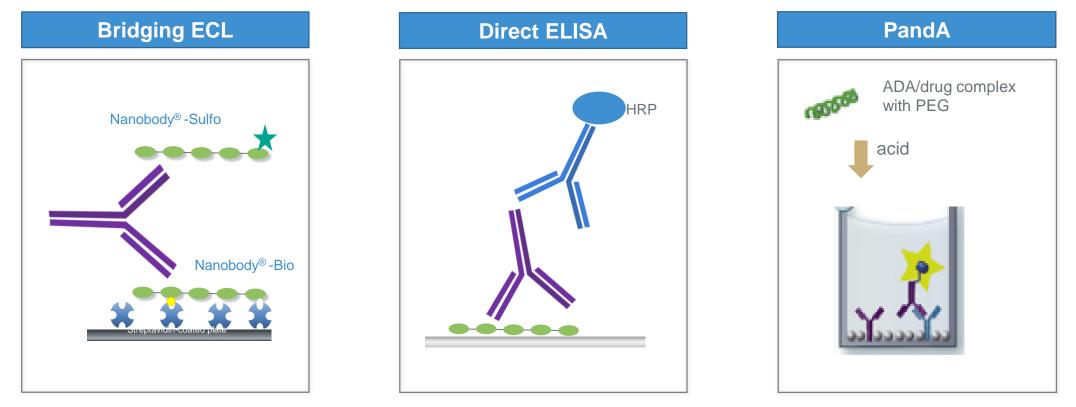
Nanobody[®] advantages


Full-cycle R&D design and production platform

Modularity of Next-Generation Nanobodies®

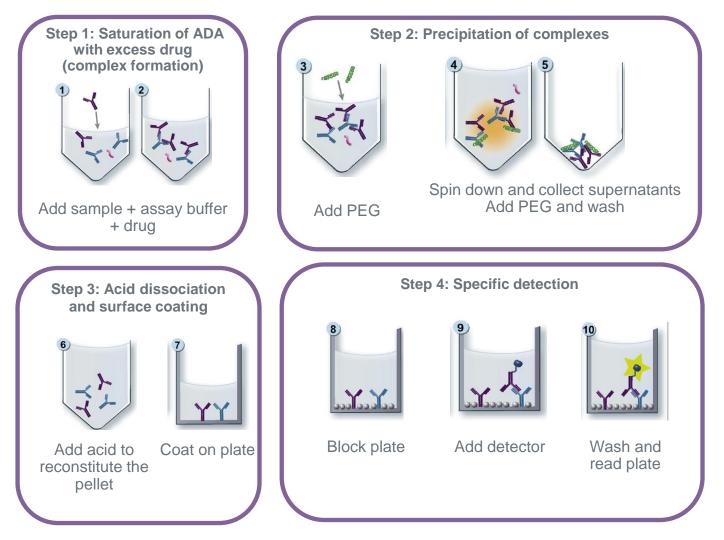
Mix & match components to build a custom therapeutic

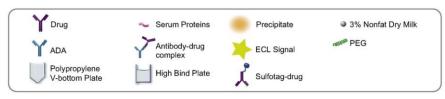
Presented at 11th EIP Symposium – 19 Feb 2020


- Multi-specific Nanobodies[®]
- Binding ADA Methods
- ADA Characterization Methods
- Case Study 1 Non-clinical binding ADA & Characterization
- Case Study 2 Clinical characterization assays

ADA Method Menu

Fit-for-purpose selection of method


- Often have parallel early development tracks for empiric selection of method
- Pre-treatment and assay competitor options, e.g. BEAD, AD, Protein G, SPE, etc.
- Background (S/N), drug and target tolerance, as well as lab suitability considered


PandA Method Development

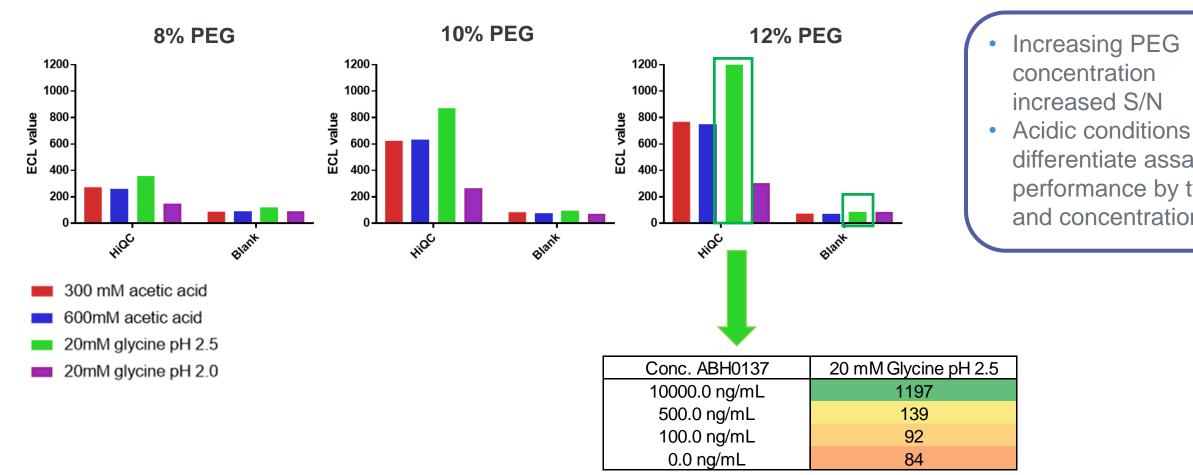
Thoughtful multi-parameter evaluations required

- Highly drug and target tolerant format
- Complex procedure with many variables
 - PEG concentration
 - acidic buffer composition
 - immune complex co-factors
 - other matrix effects
 - MRD
 - [coating], [detector], etc.
- Implementation and transfer challenges
- Robust method with careful development and optimization

PandA Method Development

Increasing PEG

concentration


increased S/N

differentiate assay

performance by type

and concentration/pH

Example parameter evaluation: PEG and acid conditions

Characterization Method Menu

Options for assessing impact & translational immunogenicity

Domain specificity

- Immunodepletion (confirmatory assay) with protein subunits
- Individual Nanobody® building blocks usually available in sufficient quantity

Isotype analysis

- ADA sub- and isotype analysis for functional impact and immunological insights
- SPR, LCMS or other platforms

NAb Epitope Characterization Assay ("NECA")

- 'Null-variant' compounds = identical to drug with scrambled CDRs
- Immunodepletion with null-variants can correlate with NAb responses

• Functional NAb Assay: cell-based or competitive LBA

CLBA for antagonistic soluble factors

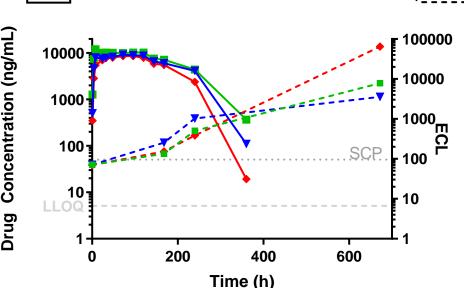
- Multi-specific Nanobodies[®]
- Binding ADA Methods
- ADA Characterization Methods
- Case Study 1 Non-clinical binding ADA & Characterization
- Case Study 2 Clinical characterization assays

Case Study 1 – Non-clinical ADA analysis

14

ADA Method Description

- Pentavalent bi-specific Nanobody® tested in NHP PK/PD study
- Bridging ADA assay with sample pre-enrichment by protein G
- Optimized for sensitivity, drug (1-4 mg/mL) & target tolerance (up to 1 µg/mL)


					onfirmation					
Bridging ADA	PC	ECL duplicate 1	ECL duplicate 2	Average	%CV	ECL duplicate 1	ECL duplica		%CV	%inhibition
	10000,00 ng/mL	120596	125158	122877	2,6%	80	76	78	3,6%	99,94
	2500,00 ng/mL	17839	18046	17943	0,8%	61	58	60	3,6%	99,67
	625,00 ng/mL	4553	3924	4239	10,5%	61	60	61	1,2%	98,57
Protein G	156,25 ng/mL	1118	1139	1129	1,3%	61	60	61	1,2%	94,64
	39,06 ng/mL	374	366	370	1,5%	64	63		1,1%	82,84
IgG	9,77 ng/mL	179	176	178	1,2%	78	72		5,7%	57,75
igo	2,44 ng/mL	102	97	100	3,6%	59	62	61	3,5%	39,20
Ť A			SCP =	86			-			
			Blank*1.3					[PC]	S/N	
Nanobody [®] -Sulfo								10000,00 ng/mL	1861,8	3
								2500,00 ng/mL	271,9)
Nanobody [®] -Bio								625,00 ng/mL	64,2	
								156,25 ng/mL	17,1	
								39,06 ng/mL	5,6	
Streptavidin-coated plate			In	terpolated ser	nsitivity:	<5 ng/ml	'	9,77 ng/mL	2,7	
					i chi vity.	so ng/me	ן ∕ ו	2,44 ng/mL	1,5	
							r			
	Present	ed at 11 th El	P Symposiu	m – 19 Feb 202	20					

Case Study 1 – Non-clinical ADA Analysis

Binding data and early-stage characterization method

ADA

ADA response in primates to humanized Nanobody[®] correlated with drop in drug exposure.

*Nanobody® structure for illustrative purposes only and not representative of actual compound NECA, neutralizing antibody epitope characterization assay; CDR, complementarity-determining region; SCP, screening cutpoint, LLOQ, lower limit of quantitation;

	Domain-specificity assay (Confirmatory)				
Screening	Full-length Nanobody				
Bridging ADA + ProtG	Screening +	Screening +	Screening +		
	Bi-specific NECA				
Screening	Monospecific null variant for Target 1	Monospecific null variant for Target 2			
Bridging ADA + ProtG	Screening +	Screening +	Non-CDR- Binding ADA		
, interest of the second secon	******				
		10 10 10			

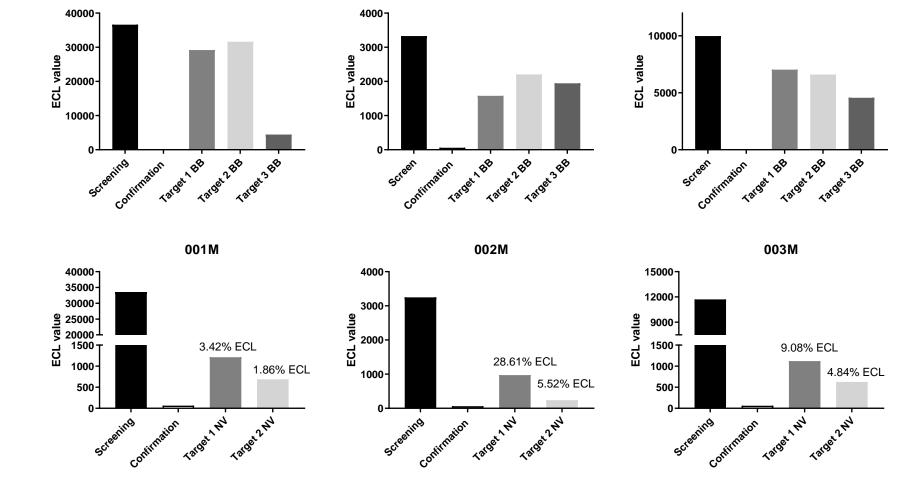
Presented at 11th EIP Symposium – 19 Feb 2020

ΡK

Case Study 1 – Non-clinical ADA Analysis

001M

003M


Early-stage immunogenicity characterization

Domain-specificity assay (monovalent building blocks)

Bi-specific NECA method (pentavalent, mono-specific null-variants)

% ECL = proportion of ADA screening signal attributed to CDR-binding in a given sample's response

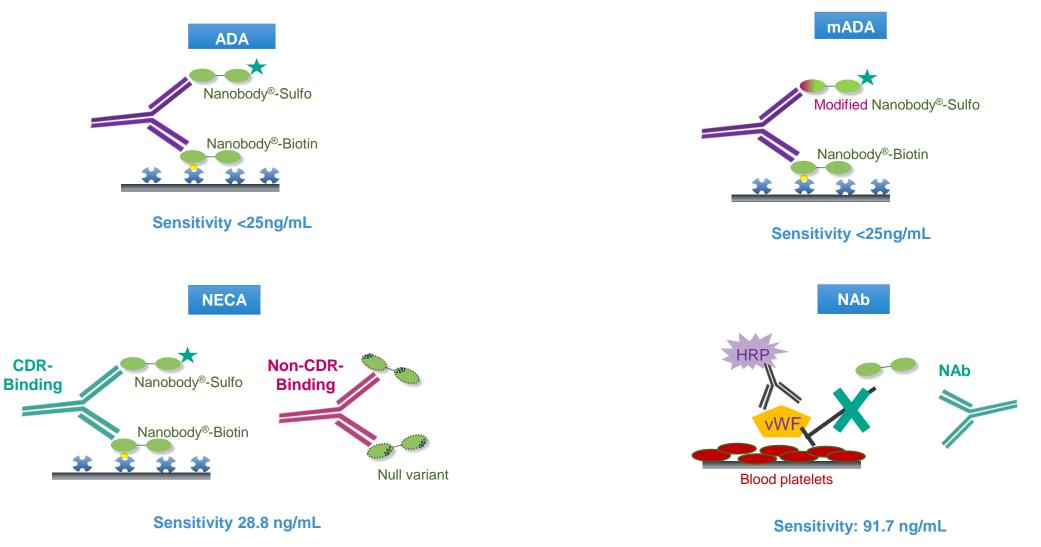
BB, building block; NV, null variant

002M

- Multi-specific Nanobodies[®]
- Binding ADA Methods
- ADA Characterization Methods
- Case Study 1 Non-clinical binding ADA & Characterization
- Case Study 2 Clinical characterization assays

Case Study 2 – Clinical ADA Testing

Caplacizumab HERCULES Study – Ph3 Pivotal


Double-blind, randomized, parallel group, multicenter placebo-controlled	Patients with aTTP; n= 144 with 1:1 active:placebo	i.v. + s.c. 10 mg per dosing	1x i.v. prior to first PE + s.c after each PE session + daily s.c. for 30 days after last PE
--	--	---------------------------------	--

- Complex situation for immunogenicity interpretation
 - Standard of care for aTTP indication includes plasma exchange
 - Pre-existing ADA (pre-Ab) prevalence 4-63%, depending on population
 - Rare disease clinical impact and epitope characterizations for agencies
- Four immunogenicity assays implemented to monitor and characterize
 - Binding ADA: tiered bridging method for binding antibodies
 - Modified ADA (mADA): detects ADA directed to C-terminal region
 - NECA: ADA directed to the CDR of the Nanobody®
 - NAb Assay: functional ELISA based on vWF (target) interactions

Case Study 2 – Clinical ADA Testing

HERCULES assay formats

Presented at 11th EIP Symposium – 19 Feb 2020

Case Study 2 – Clinical ADA Testing

Assay results comparison

	Caplacizumab	Placebo
HERCULES Immunogenicity*	N=97 (%)	N=73 (%)
Treatment-emergent binding ADA	3 (3.1)	1 (1.4)
CDR-binding ADA, detected with NECA	4 (4.1)	1 (1.4)
NAb, detected with functional assay	2 (2.1)	0 (0.0)
Pre-Ab (sampling after first PE)	55 (56.7)	46 (63.0)

° incidence on the overall study period: double blind and open label period

- Plasma exchange (PE) complicates immunogenicity data interpretation; all patients received one PE prior to randomization.
 - i) pre-Ab can be transferred from donor plasma to the subject and/or
 - ii) treatment emergent ADA (TE ADA) might be diluted during PE.
- mADA assay used to define TE-ADA that did not recognize the C-terminal binding region at any given time point
- NECA allowed more sensitive and drug tolerant read-out in conjunction with NAb assay for confirmation of functional neutralization
- No impact of TE ADA or pre-Ab on clinical efficacy (time to platelet count response) or safety

Latest for multi-functional, sequence-optimized compounds

Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Single Ascending Doses of the Anti-ADAMTS-5 Nanobody®, M6495, in Healthy Male Subjects: A Phase I, Placebo-Controlled, First-in-Human Study

Guehring et al, 2019 ACR/ARP Annual Meeting

Recent clinical data presented with a next-gen Nanobody®

- SAD in healthy male volunteers; 6 x cohorts of n=9 (2:1 active:placebo)
- Well-tolerated with TEAEs in line with protein therapeutic and similar between treatment and placebo groups
- Positive PK/PD results exposure increased with slightly greater-than-dose proportional manner; target marker reduced in dose-proportional manner.
- Low ADA incidence, 1/53 (1.9%) pre-existing ADA reactivity
 - Overall 6/53 (11.3%, 1 in each of 4 active dose groups, 2 in placebo)
 - No impact on PK/PD, consistent with other clinical programs.

Summary & Conclusions

Multiple options for multi-specifics

- Multi-specific, multi-domain Nanobodies[®] present unique challenges and opportunities to immunogenicity assay developers.
 - Modular format allows precise targeting of domain specificities.
 - Protein tool production is built into the discovery process, enabling more choices for assay developers.
 - Next-generation Nanobodies[®] have increased complexity and expected lower pre-Ab reactivity
- Drug and target tolerance remain challenging parameters, but many choices are available.
 - Nanobodies[®] offer their own unique characteristics that must be addressed with optimizations of critical reagent choices and buffer compositions.
 - Multiple targets in multiple species must be addressed.
- Tool creation allows many choices for early non-clinical immunogenicity characterizations.
 - Parallel tracks for assay development
 - Mix-and-match confirmatory set-ups
- Additional assay data can help inform clinical scientists and regulators on clinical impact and safety in complex treatment situations.
 - Clinical experience supports the need for additional methods in certain disease settings
 - Techniques developed for measuring relevant TE-ADA in the face of pre-existing antibody
 - NECA and NAb assays provide sensitivity & direct functionality when used together.
 - In agreement with regulators, NECA could be used as a stand-alone NAb assay.

Related Publications

Further reading and information

• 2019 ACR/ARP Annual Meeting :

 Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Single Ascending Doses of the Anti-ADAMTS-5 Nanobody[®], M6495, in Healthy Male Subjects: A Phase I, Placebo-Controlled, First-in-Human Study, H. Guehring, T. Balchen, K. Goteti, et al.

2020 EBF YSS:

antibodies, G. Daelman, O. Van de Vyver, E. Pattyn and A. Coddens

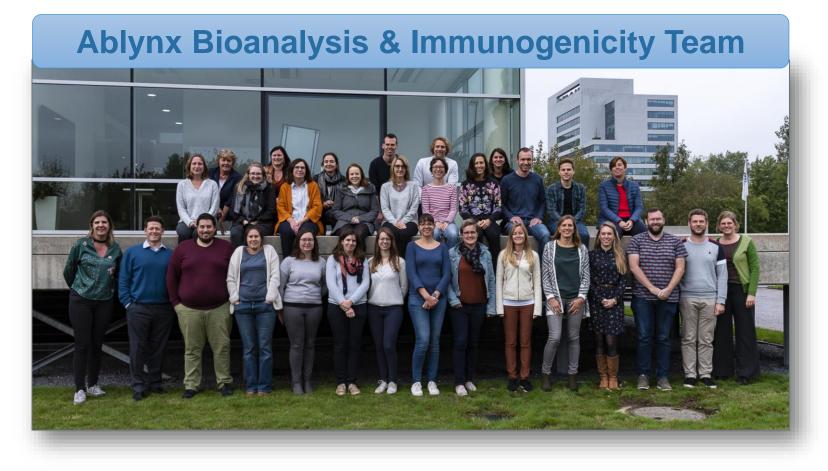
The Rise of Multi-specific Nanobodies® in Pharmacokinetic Assays, V. Allemon, K. van Lysebetten, S. Poelmans, T. Antoine and S. Pine

• NECA Paper:

• An innovative method for characterizing neutralizing antibodies against antibody-derived therapeutics, A. Coddens, V. Snoeck, L. Bontinck, M.A. Buyse, S. Pine (in press).

Acknowledgments to Contributors

BAI Current and Former Scientists:


Lieselot Bontinck Benedicte Brackeva Annelies Coddens Griet Conickx Gregory Daelman Robbe D'Hondt Kim Legiest Veerle Snoek Brendy Van Butsel Yana Vandenbossche

Ablynx

Nanobody Research Platform Clinical Sciences Operations

Sanofi

Therapeutic Area Scientists Drug Metabolism & Pharmacokinetics Preclinical Sciences Translational Medicine & Early Development

Thank you for your attention and to the 2020 EIP Organizers! Presented at 11th EIP Symposium – 19 Feb 2020