

Strategies for Selecting Positive Controls for Immunogenicity Assays

13th Open Scientific EIP Symposium on Immunogenicity of Biopharmaceuticals

Linlin Luo, Ph.D Regulated Bioanalysis Merck & Co., Inc. West Point, PA, USA April 26, 2022

- ✓ What are the current industry practices on selection of positive controls (PCs) for ADA assays
- ✓ What to choose as the PC, monoclonal antibody (mAb) vs. polyclonal antibody (pAb)?
- \checkmark Case studies: PC selection for preclinical ADA assays
- ✓ Case studies: PC selection challenges for clinical ADA assays of pegylated proteins and bispecific molecules
- ✓ Summary

Industry Practices on PCs for ADA Assays

- ✓ PCs are used to characterize an ADA assay, such as sensitivity, drug tolerance, selectivity, prozone effect, and hemolysis/lipemia recovery.
- ✓ PCs are also used to monitor assay performance.
- ✓ Both polyclonal antibodies (pAbs) and monoclonal antibodies (mAbs) have been used as PC during method development and validation.
- ✓ Health authorities recommended that PCs should be purified and diluted to a known concentration.
- ✓ Unpurified PCs led to inaccurate assessment of assay sensitivity, misleading ADA data interpretation.
- ✓ PAbs are widely considered to best represent an endogenous ADA response and are recommended to be used for assay characterization experiments.
- ✓ MAbs may be used to prepare robust positive controls to monitor assay performance.

Outline

- ✓ What are the current industry practices on selection of positive controls (PCs) for ADA assays
- ✓ What to choose as the PC, monoclonal antibody (mAb) vs. polyclonal antibody (pAb)?
- ✓ Case studies: PC selection for preclinical ADA assays
- Case studies: PC selection challenges for clinical ADA assays of pegylated proteins and bispecific molecules
- ✓ Summary

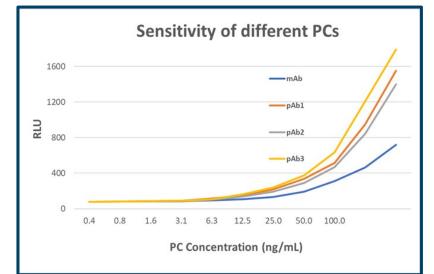
Monoclonal vs. Polyclonal Antibody PCs

mAb	pAb
 With a certain binding affinity and epitope specificity; May better mimic clinically relevant immune responses, such as neutralizing activities. 	 A collection of antibodies with different binding affinities and idiotype epitope specificities; May be a better surrogate for clinical samples that are polyclonal.
 Longer time to produce/develop the initial clone; Relative ease of generation afterwards 	 Inexpensive and relatively quick to produce; Challenges with yield and purification
 Large quantity and minimum lot-to-lot variability 	Limited quantity and lot-to-lot variability

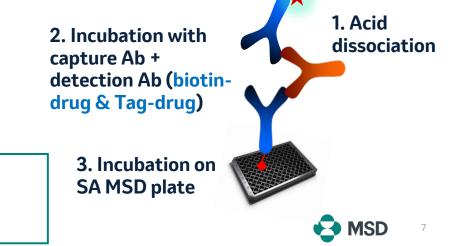
✓ A panel of mAbs with diverse repertoire of different binding properties and neutralization activities can be a promising tool for assay selection and characterization, as well as data interpretation.

✓ How to decide what to use as the PC, a mAb, a mixture of mAbs, or a pAb?

Mixture of mAbs vs. pAb as PC


mAb* X 2.5 ~ 500 pAb1 Y 35.8 ~ 10 pAb2 Y 30.0 ~ 20 pAb3 Z 33.8 ~ 20 pAb4 Z 16.9 ~ 50 mixture of 3 mAbs; used for assay development/optimization PC concentration (ng/mL) PC concentration (ng/mL) 4. Incubar detection	PC type	Vendor	Sensitivity (ng/mL)	Drug toleranceª at PC 100 ng/mL (μg/mL)	1600 -	Sensitivity of different PCs	
pAb1Y35.8~10pAb2Y30.0~20pAb3Z33.8~20pAb4Z16.9~50A mixture of 3 mAbs; used for assay development/optimization The trough level of the efficacious dose predicted to be ~ 80 µg/mLPC concentration (ng/mL)4. Incubar detection drug)	mAb*	Х	2.5		1200 -	—pAb1	
pAb2Y30.0~ 20pAb3Z33.8~ 20pAb4Z16.9~ 50A mixture of 3 mAbs; used for assay development/optimization The trough level of the efficacious dose predicted to be ~ 80 μg/mLPC Concentration (ng/mL)4. Incubar detection drug)	pAb1	Y	35.8	~ 10	800 -		
pAb3Z33.8~ 20pAb4Z16.9~ 50A mixture of 3 mAbs; used for assay development/optimization The trough level of the efficacious dose predicted to be ~ 80 μg/mLPC concentration (ng/mL)4. Incubar detection drug)	pAb2	Y	30.0	~ 20			
A mixture of 3 mAbs; used for assay development/optimization The trough level of the efficacious dose predicted to be ~ 80 µg/mL 4. Incubation detection drug)	pAb3	Z	33.8	~ 20	400 -		
A mixture of 3 mAbs; used for assay development/optimization The trough level of the efficacious dose predicted to be ~ 80 μg/mL drug)	pAb4	Z	16.9	~ 50	0 -	1.0 2.0 3.9 7.8 15.6 31.3 62.5 125.0	4. Incuba
							drug)
	of 80 µg,	/mL at 100	ng/mL, indicat	erance than the p ing some low leve to drug interfere	ls of A[

3. Incubation on SA MSD plate


Single mAb vs. pAb as PC

PC type	Vendo r	Sensitivity (ng/mL)	Drug tolerance ^a at PC 24 ng/mL (μg/mL)	Drug tolerance ^a at PC 100 ng/mL (μg/mL)
mAb*	Х	1.8	83	308
pAb1	Y	1.0	84	165
pAb2	Z	1.3	89	283
pAb3	Z	1.1	96	337
* mAbwacı	used for asc	say dayalanmar	t/ontimization	

* mAb was used for assay development/optimization.
<u>a The trough level of the efficacious does is predicted to be ~ 50 μg/mL.</u>

- ✓ mAb and pAbs showed comparable sensitivity and drug tolerance.
- ✓ Either mAb or pAb may be a suitable PC for this assay.
- ✓ Drug tolerance demonstrated at low PC levels for both mAb and pAbs suggests assay's capability of detecting low ADAs in clinical samples.
- Whether the sensitivity and drug tolerance defined using a PC truly represents the assay needs to be closely looked at when evaluating clinical PK/ADA data.

Outline

✓ What are the current industry practices on selection of positive controls (PCs) for ADA assays

✓ What to choose as the PC, monoclonal antibody (mAb) vs. polyclonal antibody (pAb)?

\checkmark Case studies: PC selection for preclinical ADA assays

- Case studies: PC selection challenges for clinical ADA assays of pegylated proteins and bispecific molecules
- ✓ Summary

Preclinical ADA Assay for mAbs

- ✓ A generic PC was used:
 - Mouse anti-Hu IgG (Ch2 domain) mAb
- ✓ An ECL bridging assay (screening tier only) with acid dissociation was qualified in rhesus serum.
- ✓ Cut Point: 1.04 (S/N)
- ✓ Parameters qualified:

Qualification Parameter	Results							
Sensitivity	1.94 ng/mL							
		LPC (3 ng/mL)	MPC (500 ng/mL)	HPC (5000 ng/mL)				
Precision	Intra-assay	3.3%	13.0%	3.2%				
	Inter-assay	5.8%	23.9%	23.7%				
Drug Tolerance	500 ng/mL: 1509 µ	ւց/mL of drug	1000 ng/mL: > 1600 μg/mL of drug					
Selectivity	Unspiked (9/10); Spiked at LPC (10/10); Hemolyzed (5/5 for both unspiked and spiked at LPC)							
Prozone	Not observed up to	o 50 μg/mL						

 Using generic anti-human antibodies as the PC is a common practice in nonclinical ADA assay development.

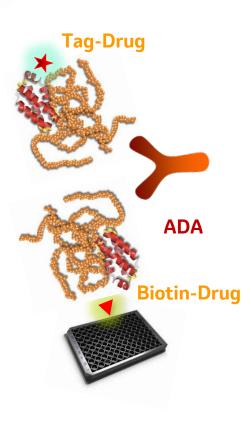
Preclinical ADA Assay for a Bispecific Molecule

- ✓ A generic PC was used:
 - Mouse anti-Hu IgG (Ch2 domain) mAb
- ✓ An ECL bridging assay (screening tier only) with acid dissociation was qualified in cyno serum.
- ✓ Estimated cut point: ~ 1.59 (S/N)
- ✓ Parameters tested in development:

Qualification Parameter	Results		Biotin-drug		
Sensitivity	~ 24 ng/mL				
Precision (Overall)	LPC (32 ng/mL)	MPC (500 ng	/mL)	HPC (5000 ng/mL)	- Cocococococococococococococococococococ
Precision (Overall)	16%	23%		23%	
Drug Tolerance	500 ng/mL: ~ 750 μg/mL c	of drug	Among different modalities,		
Selectivity	Unspiked (10/10); Spiked a spiked at LPC)	t LPC (10/10);	using the same generic anti- human antibody as the PC		
Prozone	Not observed up to 100 μg	/mL			saves development effort.

Tag-drug

ADA


Preclinical ADA Assay for Pegylated Proteins

- ✓ Two PCs
 - Anti-X: goat anti hu pAb, affinity purified
 - Anti-PEG: IgM
- ✓ An ECL bridging assay (screening tier only) qualified in rhesus serum
- ✓ Cut Point: 1.07 (S/N)
- ✓ Parameters qualified:

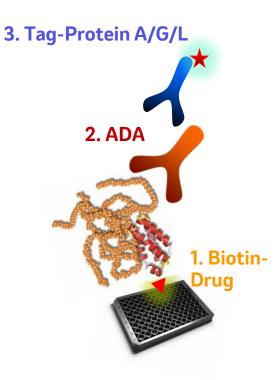
Qualification Parameter	Anti-X			Anti-PEG			
Sensitivity	4 ng/mL			311 ng/mL			
	ng/mL) ng/mL) ng/mL)		HPC (1000 ng/mL)				
Precision	Intra-assay	3.3%	3.6%	4.1%	N/A		
	Inter-assay	8.7%	14.0%	13.1%			
Drug Tolerance	100 ng/mL: > drug	9.8 µg/mL of	1000 ng/mL drug	500 ng/mL: 6.6 μg/mL of drug	1000 ng/mL: > 5 μg/mL of drug		
Selectivity		0); Spiked at L d and spiked at	PC (10/10); Hem LPC)	N/A			
Prozone	Not observed	up to 10 µg/mL			Not observed up to 80 μ	lg/mL	

• To evaluate the potential impact of anti-PEG ADAs, an anti-PEG PC is used to demonstrate assay's ability to detect ADAs against PEG, for pegylated therapeutics.

Outline

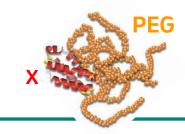
✓ What are the current industry practices on selection of positive controls (PCs) for ADA assays

✓ What to choose as the PC, monoclonal antibody (mAb) vs. polyclonal antibody (pAb)?


✓ Case studies on PC selection for preclinical ADA assays

- ✓ Case studies: PC selection challenges for clinical ADA assays of pegylated proteins and bispecific molecules
- ✓ Summary

Clinical ADA Assay for a Pegylated Protein


✓ Two PCs

- Anti-X: Chimeric human IgG1
- Anti-PEG: Chimeric human IgM
- ✓ A direct binding assay in development and to be validated one assay to detect ADAs against both components, i.e., protein X and PEG
 - Screening
 - Confirmatory
 - Titer/Characterization (e.g., domain mapping) if necessary
- ✓ Challenges
 - High assay background
 - Selection of anti-PEG: IgM vs. IgG
 - Optimal assay conditions for both PCs
 - High drug concentration for confirmatory tier

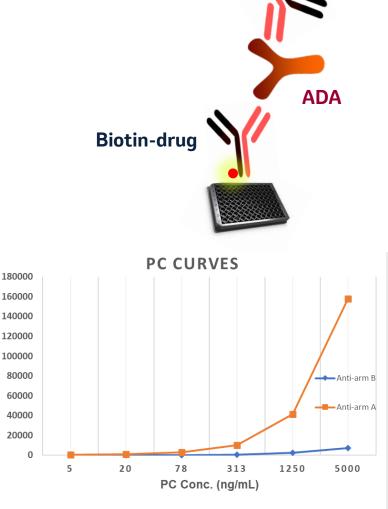
Anti-PEG Antibodies: IgG vs. IgM

✓ IgGs failed to generate satisfactory signals; IgM as anti-PEG PC

(µg/mL)	lgG #1	lgG #2	lgG #3	lgG #4	lgM		
20.00	14856	38547	198	142	n/a		
<mark>5.00</mark>	413	694	138	134	<mark>6358</mark>		
1.25	169	185	129	112			
0.31	139	159	152	144	n/a		
<mark>0.10</mark>	0.10 n/a						
0.08	145	131	121	123	n/a		
		NC = 1	157				

- There are challenges developing a single assay able to detect ADAs against both the therapeutic protein and PEG portions with reasonable sensitivities/DTs for both.
- Esp. the anti-PEG antibody as PC needs to be carefully investigated. Our data suggest IgM is a good candidate.

Much higher drug concentration is needed for IgM signal inhibition

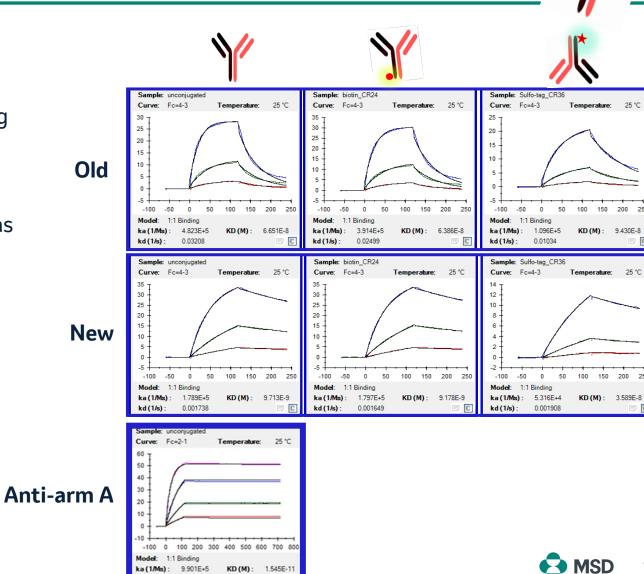

lgM	Drug (µg/mL)								
(ng/mL)	25	50	100	200	400	800	1600	25	
5000	9.6	9.7	9.7	31.1	61.8	74.6	74.6	lgG #1 5000 ng/mL	99.1
100	5.2	4.5	-0.2	15.6	23.1	30.2	30.2	lgG #2 5000 ng/mL	99.5
0 (NC)	5.4	15.0	5.4	22.9	16.3	24.9	24.9		

Clinical ADA Assay for a Bispecific Molecule

✓ Two PCs

- Mouse anti-arm A IgG
 - Large scale available, to be used as assay control in production
 - To be validated for all parameters
- Mouse anti-arm B lgG
 - Limited quantity
 - To be validated for sensitivity and drug tolerance only
- $\checkmark~$ An ECL bridging assay in development and to be validated
 - Screening
 - Confirmatory
 - Titer, and if needed Characterization (e.g., domain mapping)
- ✓ Challenges
 - Significant difference of PC sensitivities
 - Searching for a suitable anti-arm B PC

Tag-drug


Comparison of Two Anti-arm B Antibodies: Old vs. New

Biacore data: \checkmark

- Old anti-arm B had high dissociation rate when ٠ binding to either unconjugated or conjugated drug (i.e., biotin & taq)
- New anti-arm B showed slower dissociation rate ٠
- New anti-arm B provided much improved sensitivity as \checkmark PC, compared with old anti-arm B

PC Levels	RLU Counts			
(ng/mL)	Old	New		
5000	2201	32082		
100	142	961		

Proper characterization of an antibody is critical • to choose an appropriate PC for an ADA assay, to help deliver more clinically relevant ADA data.

- ✓ An ADA assay needs to be properly developed in order to assess clinically relevant immunogenicity.
- ✓ Selection of representative PC enables development of suitable assays for clinical ADA assessment.
- ✓ Whether mAb or pAb is an appropriate PC is case by case and should be evaluated during method development.
- ✓ Nonclinical ADA is rarely predictive of clinical immunogenicity potential. To balance risk and benefit, a generic anti-human antibody, or commercially available specific antibody is a good choice for PC.
- ✓ For pegylated proteins, selecting an appropriate anti-PEG PC is critical for potential ADA testing against PEG. Our data demonstrated that IgM can be a good PC choice.
- ✓ For bispecific molecules, PC for each domain needs to be carefully characterized, which ensures their suitability to demonstrate the assay can sufficiently detect ADAs against each domain.
- ✓ Will the clinical outcome change when different PCs are used for clinical ADA assay development? Or will the generated ADA data correlate with clinical outcome?

Acknowledgements

✓ Jihong Yang ✓ Marina Li, PhD ✓ Marina Ichetovkin ✓ Khyati Kothari ✓ Ketal Shah

✓ Eric Woolf, PhD

✓Yang Xu, PhD✓Krisna Duong-Ly, PhD

Biography and Contact Information

- ✓ 16 years as a bioanalytical scientist focusing in the area of regulated bioanalytical (BA) support for biologics
- ✓ Been contributing to pharmacokinetic (PK), immunogenicity (IMG), and neutralizing antibody (NAb) assay development and validation, in support of numerous preclinical and clinical studies for many critical programs
- ✓ Currently a Director, in the Regulated Bioanalysis Group at Merck & Co., Inc., West Point, PA, USA, leading a group of scientists responsible for developing bioanalytical assays to support biotherapeutic development and licensure
- ✓ Linlin.Luo@Merck.com

