

Number of Donors Needed to Adequately Assess *in-vitro* Assays

APRIL 27^{TH} 2023, LISBON SOFIE DENIES

Introduction

No clear guidelines on how to determine sample size for in-vitro immunogenicity screening

 uncertainty in how to decide on sample size Basic statistical principles that can guide evidence-based sample size decisions

Overview

Theory: what is important in determining sample size, and what is not?

Examples: sample size calculations for specific research questions

Resources: online freely available tools to perform sample size calculations

Overview

Theory: what is important in determining sample size, and **what is not**?

Examples: sample size calculations for specific research questions

Resources: online freely available tools to perform sample size calculations

What sample size do I need to get a representative sample?

What sample size do I need to get good HLA coverage?

Variant of a similarly flawed question!

What sample size do I need to get good HLA coverage?

Coverage

=

The % of the **population** that has the same alleles as included in the **sample**

Coverage cannot determine sample size!

Sample includes all alleles present in the population

= 100% coverage

Coverage cannot determine sample size!

SD ANALYTICS

Sample includes all alleles present in the population

= 100% coverage

≠ Sufficient to characterize response in population:

HLA not only factor determining immunogenicity risk

Overview

Theory: what is important in determining sample size, and what is not?

Examples: sample size calculations for specific research questions

Resources: online freely available tools to perform sample size calculations

What does determine sample size?

What does determine sample size?

What does determine sample size?

Binomial distribution

Binomial distribution describes how likely observed response rates in individual experiments occur with sample size n and true response rate p in population

a Q² Solutions Company

Immun

Binomial distribution

SD ANALYTICS

a Q²Solutions Company

Immun

Sample size criteria

•Based on the binomial distribution, it can be evaluated which sample sizes result in sufficient:

Sensitivity: detect responses in a sample if a relevant proportion of the population shows a response

Specificity: possibility to discriminate compounds with a relevant response rate from compounds with non-relevant response rate

Sensitivity: probability of 0 responses

		Response rate population			
		10%	20%	30%	40%
n test sample	10	43%	17%	6%	2%
	20	19%	3%	<1%	<1%
	30	8%	<1%	<1%	<1%
	40	4%	<1%	<1%	<1%
	50	2%	<1%	<1%	<1%

Probability of 0 responses in test sample in function of sample size and response rate in the population, assuming 80% assay sensitivity

Immun

a Q²Solutions Company

Sensitivity: conclusions with 0 responses

SD ANALYTICS

a Q²Solutions Company

Specificity: example n=20

Although a compound with 20% response rate will result in at least 1 response in >95% of experiment...

...a compound with 5% response rate will do this as well in 56% of experiments.

SD ANALYTICS

Specificity: example n=50

SD ANALYTICS

A compound with 20% response rate will result in at least 4 responses in >95% of experiment with n=50...

...a compound with 5% response rate only in 14% of experiments.

⇒Specificity versus a response rate of 5% is improved to **86% (44%** for n=20).

Overview

Theory: what is important in determining sample size, and what is not?

Examples: sample size calculations for specific research questions

Resources: online freely available tools to perform sample size calculations

Case study 1: Design

•Disease context/risk analysis: target profile <25% positive responses.

- •Prior information: product is not strongly immunogenic.
- •Required end conclusion: to confirm with sufficient confidence, that the response rate is <25%.
- •Sponsor would like to be able to show a response rate significantly <25% if the true response rate of the product is up to 10%.
- •To have (at least) 80% power to demonstrate that the response rate is significantly <25%, if the true response rate is 10% (or lower), **the required sample size = 45**.

Case study 1: Design

SD ANALYTICS			Confidence level	
	culator for Immunogenicity so	preening	0,95	
Power response rate below threshold	This calculator shows the required sample size to be able Common levels for power are 0.80 (80% chance to be abl falsely conclude that the response rate is significantly belo depende on the difference between the threshold and the	le to demonstrate that the response rate is significat ow the threshold), but project-specific factors may w	Threshold	
Distribution responses	depends on the difference between the threshold and the response rate of compounds for which it is ne threshold. With larger sample size, it will be possible to show for compounds with a response rate close		0,25	
Precision	Confidence level			
	0,95		Power	
	Threshold			
	0,25		0,8	
	Power			
	0.8		Compound PP that should result in	

Compound RR that should result in acceptance

0,10

Required sample size: n=45

Compound RR that should result in

acceptance

Case study 1: Results

•Experiments with a lower number of donors were simulated by repeatedly taking a different subset of 45 donors evaluated for Nivolumab (11% response rate)

•Results confirm that lower sample sizes would not have had sufficient power to reach the desired end conclusion

Case study 2: Design

•Disease context/risk analysis: target profile <15% positive responses.

•Prior information: none.

•Required end conclusion: **filter out** compounds that are **far away** from this target (>40% response rate). It is important to **keep potentially interesting** compounds (compounds with a response rate <15%).

•With n=20 and continuing with only compounds showing 5 or less responses:

- 90% of the compounds with a response rate of 15% (and more with a response rate below 15%) will be selected,
- 90% of compounds with a response rate of 40% (*and more with a response rate above 40%*) will be filtered out.

Case study 2: Results

SD ANALYTICS

Sample size

20

Sample size calculator for Immunogenicity screening

Sample size

Response rate 1

Response rate 2

Responses

1.00

2.00

3.00

4.00

5.00

6.00

20

	This calculator show
Power response rate	This can be used to

below threshold

Precision

This calculator shows the probability to obtain x or less responses in function of re This can be used to evaluate if, with a specific sample size, it is possible to discrir that one response rate issults in responses at or below a certain level, but unlikel response rates. It is not possible to calculate the optimal sample size and cut-off, the two distributions will be more narrow (each experiment will produce a value m size, it will therefore be possible to discriminate response rates that are closer tog than with low sample sizes.

Probability x or less responses with RR1

0.18

0.40

0.65

0.83

0.93

0.98

Response rate 1

0.15

Response rate 2

0.4

	# Responses	Probability x or less responses with RR1	Probability x or less responses with RR2
	1.00	0.18	0.00
	2.00	0.40	0.00
Probability x	3.00	0.65	0.02
	4.00	0.83	0.05
	5.00	0.93	0.13
	6.00	0.98	0.25
	7.00	0.99	0.42

Case study 2: Design

•Experiments with lower sample size were simulated by repeatedly taking a different subset of 45 donors, evaluated for ATR-107 (42%) and Nivolumab (11%)

•Range of responses in function of sample size, excluding the 10% most extreme responses at each end

SD ANALYTICS

Case study 3: Design

•Without a clearly defined hypothesis, sample size can be determined based on the precision of the estimates that can be obtained (confidence interval)

Observed response rate	95% Cl n=10	95% Cl n=50
10%	2%-40%	4%-21%
20%	6%-51%	11%-33%
30%	11%-60%	19%-44%
40%	17%-69%	28%-54%
60%	31%-83%	46%-72%

Case study 3: Design

SD ANALYTICS

Sample size calculator for Immunogenicity screening

Power response rate below threshold	This calculator shows the precision of the estimate of response rate that can be obtained with a certain sample size (confidence level around the estimate). With higher sample size, each experiment will produce a value more closely to the true value, and there will be thus less uncertainty about the true response rate based on results from one experiment (narrower confidence level of the interval is 0.95 (interval contains the true response rate with 95% probability), but can be adapated in function of project-specific factors.	
Distribution responses	Sample size	
Precision	10	Sample size
	Observed response rate	
	0.2	50
	Confidence level	
	0.95	
		Observed response rate
	With this sample size, y	0.2
		Confidence level 0.95
SD ANALYTICS		With this sample size, you will be 95 % certain that the true response rate is within 11.24% - 33.04%

Case study 3: Results

SD ANALYTICS

a Q²Solutions Company

Overview

Theory: what is important in determining sample size, and what is not?

Examples: sample size calculations for specific research questions

Resources: online freely available tools to perform sample size calculations

Resources

Manuscript in preparation:

"Statistical considerations on demonstrating unwanted immunogenicity"

- Sample size calculation
- Representativeness (HLA similarity)
- > How to determine positivity per donor

https://shiny.sd-analytics.org/samplesize/

Conclusion

Clear definition of desired end conclusions

Calculations based on the binomial distribution:

- In collaboration with statistician
- With statistical software or online calculators

Sample size that allows to make the desired end conclusions

Questions?

