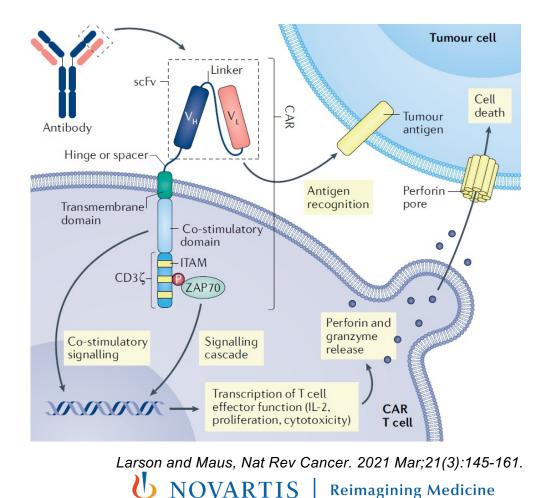


ΥΥΥΥΥΥΥΥΥΥ ΑΥΥΑΥΥΑΥΥΑΥ ΥΥΑΥΥΑΥΥΥΥΥ

Novartis Institutes for Biomedical Research

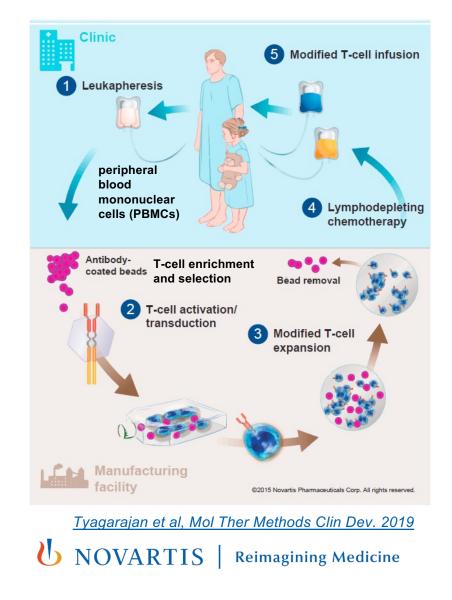
CAR-T therapies: insights in immunogenicity


Lydia Michaut

European Immunogenicity Platform Scientific Symposium on Immunogenicity of Biopharmaceuticals April 28th, 2023

U NOVARTIS | Reimagining Medicine

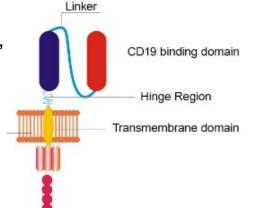
Basic mechanism of a CAR-T cell


- Living drug
- Genetically-engineered T lymphocytes expressing an artificial T cell receptor, the chimeric antigen receptor.
 - Extracellular domain: binding to antigens expressed on target cells tumour) (*e.g. singlechain fragment variable (scFv) antibody construct*)
 - Co-stimulatory domain (CD28, 4-1BB..)
 - CD3ζ chain (three immune receptor tyrosinebased activation motif (ITAM) domains that, upon phosphorylation, signal through ZAP70).
- Establishment of an immunological synapse upon binding.

CAR-T manufacturing

Ex. of an autologous therapy

- Collection of peripheral blood mononuclear cells (PBMCs) from a patient by leukapheresis after lymphodepleting
- T cells are enriched, selected, activated and transduced with self-inactivating lentiviral vector containing anti-CD19 CAR transgene
- 3) Cell expansion, and isolation of transduced T cells
- 4) Once CAR/T cells are available, lymphodepleting chemotherapy is initiated
- 5) Infusion of modified T cells into the same patient who provided the cells


Approved CAR-T therapies

CAR T product	Brand name	Initial US approval	Company	Target	Antigen binding domain	Intracellular domain	Indication(s)
tisagenlecleucel ¹	KYMRIAH	2017	Novartis	CD19	scFv	4-1BB - CD3ζ	B cell acute lymphoblastic leukemia (ALL); diffuse large B cell lymphoma (DLBCL)
axicabtagene ciloleucel ²	YESCARTA	2017	Kite / Gilead	CD19	scFv	CD28 - CD3ζ	diffuse large B cell lymphoma (DLBCL); follicular lymphoma (FL)
brexucabtagene autoleucel ³	TECARTUS	2020	Kite / Gilead	CD19	scFv	CD28 - CD3ζ	mantle cell lymphoma (MCL)
idecabtagene vicleucel ⁵	ABECMA	2021	Bluebird / Celgene / BMS	BCMA	scFv	4-1BB - CD3ζ	multiple myeloma
lisocabtagene maraleucel ⁴	BREYANZI	2021	Juno / BMS	CD19	scFv	4-1BB - CD3ζ	diffuse large B-cell lymphoma (DLBCL); high-grade B-cell lymphoma (HGBL); primary mediastinal large B-cell lymphoma (PMBCL); follicular lymphoma (FL)
ciltacabtagene autoleucel 6	CARVYKTI	2022	Legend / J&J	BCMA	2xV _H H	4-1BB - CD <u>3</u> ζ	multiple myeloma
 ¹ KYMRIAH prescribing information (US), 2020. ⁴ BREYANZI prescribing information (US), 2021. ⁴ BREYANZI prescribing information (US), 2021. ⁵ ABECMA prescribing information (US), 2021. ⁶ CARVYKTI SmPC (EMA), 2022. ⁶ CARVYKTI SmPC (EMA), 2022. 							

Immunogenicity of CAR-Ts

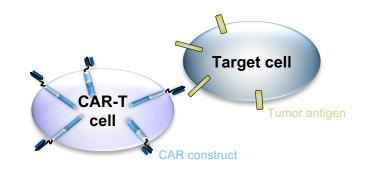
- Both humoral and cellmediated responses to CAR can occur and impact:
 - Patients' safety (anaphylaxis, cytokine release syndrome (CRS), infusion reactions, hypersensitivity, immune effector cell associated neurotoxicity syndrome (ICANS)...
 - Persistence and therefore efficacy of the treatment, mainly upon re-infusion.
- Concepts of protein-based therapeutics apply to CAR-T cell therapies ... PLUS ...

- Complex, "multidomain" structure
 - antigen binding domain: scFv (murine, humanized); camelid nanobody
 - hinge and linker expression of a protein encoded by several human genes in a single CAR construct creates fusion sequences at junctions that do not normally exist in humans.

- Intracellular domain: presentation on the cell surface can enhance CAR IG: CD8+ T-cells that recognize peptides from foreign transgene products presented by HLA class I molecules on transduced T-cells are a major mediator of immune mediated elimination
- Complex production process: residual impurities such as (lenti)viral proteins or other non-human proteins related to gene transfer process.

NOVARTIS | Reimagining Medicine

Antibody response


Potential implications

Neutralization of binding

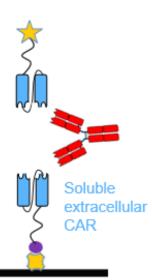
- Neutralizing ADAs
- Block CAR binding to the target antigen
- Impact on efficacy by preventing cell lysis

ADCC and CDC

- Non-neutralizing ADAs (opsonins)
- Induction of:
 - antibody-dependent cellular cytotoxicity (-> NK cells)
 - complement-dependent cytotoxicity (-> complement activation)
 - => CART cell lysis or clearance; limit repeat dosing and therapeutic outcome

Monitoring

The "to-be-or-not-to-be" of ADA assay format


-> LBA (plate-based assay)?

-> CBA (cell-based assay)?

UNOVARTIS | Reimagining Medicine

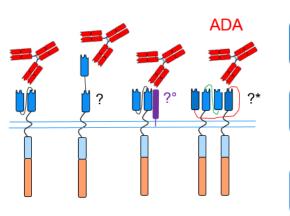
ADA assay formats for approved CAR-T

Bridging format LBA

Lack of solubility

CAR domains may be insoluble

 Soluble CAR does not represent the full extracellular domain


Missed epitopes

- Conformational
- Interactions with other membrane proteins

Epitope masking

 Labeling of CAR domain as reagent

Endogenous glycosyation of CAR

ADA potentially more relevant?

Label-free CAR

Cell-based assay

No risk of masked epitopes

Presentation in cell membrane

Native environment & conformation, potential interaction partners

CAR processed through T cell expression system

Glycosylation

Not limited by insoluble/hydrophobic domains

UNOVARTIS | Reimagining Medicine

7 °Salmerón et al. J Immunol. (1991); 147(9): 3047-3052
 * Whitlow et al. Protein Engineering (1994); 7(8): 1017-1026

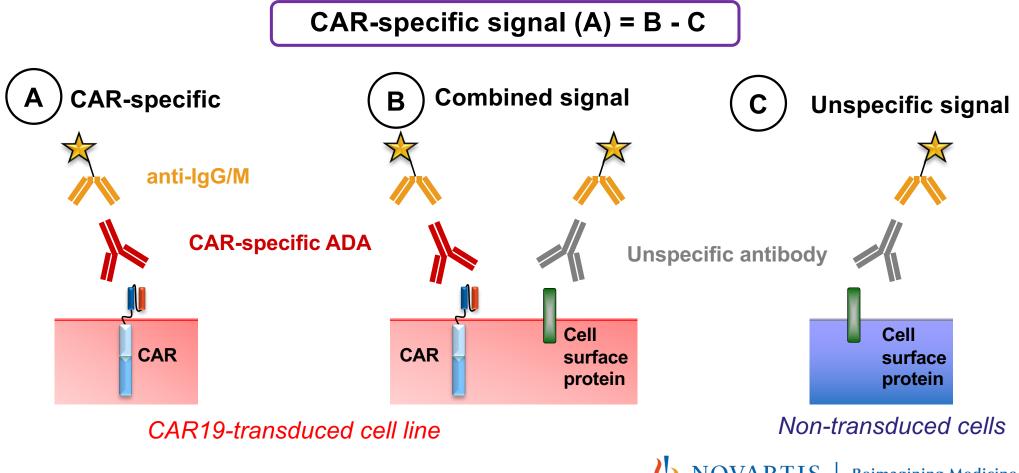
ADA assay formats for approved CAR-T

Product	Assay		Deideise	Bridging ELISA with source Antibody (e.g. FMC63)	Cell based assay
KYMRIAH ¹	Cell-based flow cytometry assay for anti-CAR19 ⁷	Detected ADAs & Features	Bridging ELISA with soluble CAR		
	ELISA for anti-FMC63;	Anti-VAR	1	 Image: A second s	1
YESCARTA ²	cell-based confirmatory assay	Anti- <u>scFv</u>	1	X	 Image: A start of the start of
TECARTUS ³	ELISA for anti-FMC63	Anti-Hinge, anti-Linker	1	X	√
ABECMA ⁵	Not specified	Anti-membrane protein interaction epitopes	X	X	√
BREYANZI ⁴	ECL for anti-extracellular CD19-binding domain	Anti-insoluble extracellular domains	X	X	√
CARVYKTI ⁶	Not specified	Label-Free	X	X	√

References:

- ¹ KYMRIAH prescribing information (US), 2020.
- ² YESCARTA prescribing information (US), 2021.

³ TECARTUS prescribing information (US), 2021. ⁷ Potthoff et al, (2020) J Immunol Methods.

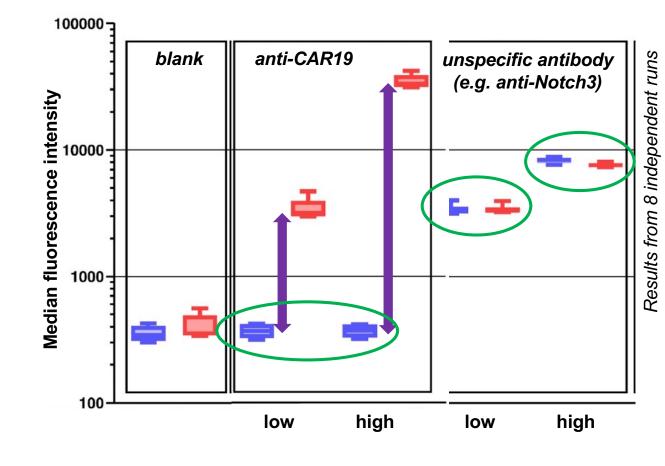

⁴ BREYANZI prescribing information (US), 2021.

⁵ ABECMA prescribing information (US), 2021.

6CARVYKTI SmPC (EMA), 2022.

U NOVARTIS | Reimagining Medicine

Cell-based ADA assay for anti-CAR antibodies

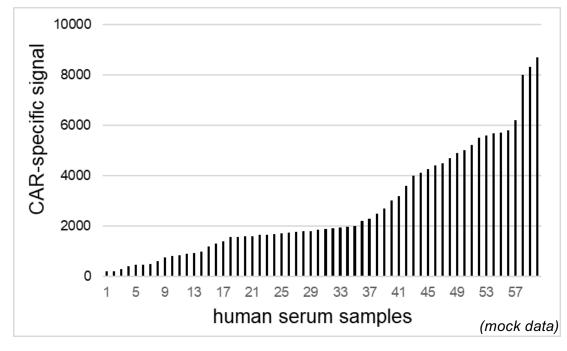

9 Adapted from Potthoff et al, J Immunol Methods. 2020 Jan;476:112692. **U** NOVARTIS

Reimagining Medicine

Integration of data from two cell lines

- Positive controls assessed with both WT cells (blue) and CAR19 cells (red)
- Specific anti-CAR19 antibody does not bind to WT cells
- Signal of unspecific antibody is comparable for both cell lines

Signal subtraction between cell lines is meaningful = anti-CAR19 specific signal


Adapted from Potthoff et al, J Immunol Methods. 2020 Jan;476:112692.

UNOVARTIS | Reimagining Medicine

Defining the assay cut point

Challenge: pre-existing antibodies

 \rightarrow high signals in treatment-naive human serum samples (HAMAs)

Adapted from Potthoff et al, J Immunol Methods. 2020 Jan;476:112692.

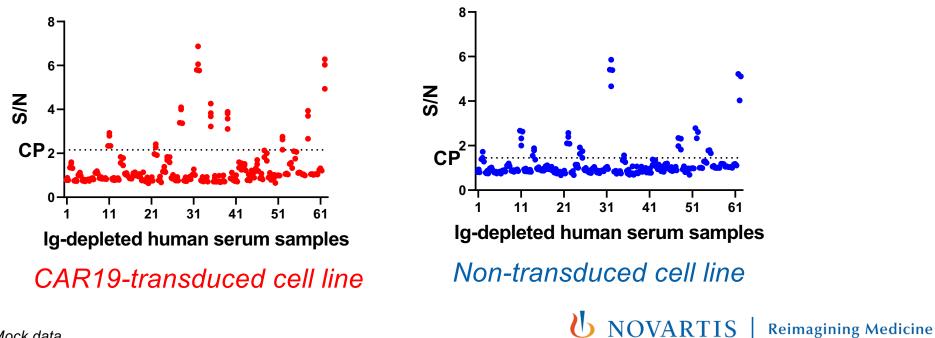
- No meaningful statistical outlier removal
- No calculation of representative cut point possible with naive human serum

UNOVARTIS | Reimagining Medicine

Immunoglobulin-depleted sera

- Screened on both cell-lines
- Used for cut-point determination and negative control pool preparation

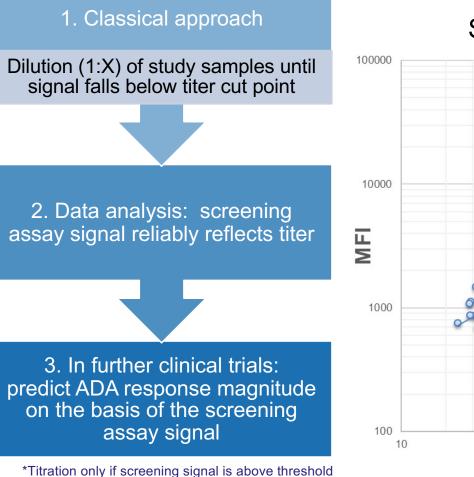
Benefit

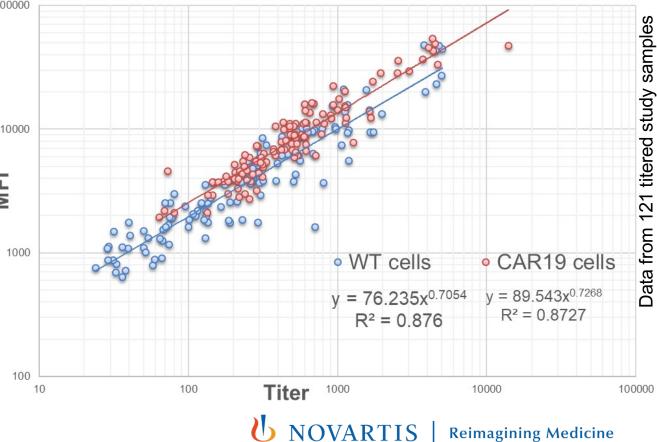

Avoid false-

negatives

Risk

Increase false-


positive rate


¹² Mock data

See also: Potthoff et al, J Immunol Methods. 2020 Jan;476:112692.

Reliable prediction of titer based on screening assay signal

Screening Assay MFI vs. Titer

Antibody response to approved CAR/T

Product	Assay	Prevalence	Incidence	Impa		
KYMRIAH ¹	Cell-based flow cytometry assay for anti-CAR19 ⁷	86% - 91%	5% (DLBCL)	- Per pos - No	Humoral immunogenicity of	
YESCARTA ²	ELISA for anti-FMC63; cell-based confirmatory assay	13%	Screening: 2% Confirmatory: 0%	- No YE - No	 No standardized approach for evaluation of ADA production Different detection methods result in different numerical values (%) for humoral immunogenicity 	of
TECARTUS ³	ELISA for anti-FMC63	Not specified	Screening: 17pts Confirmatory: 0	- No TE(- No		of
ABECMA ⁵	Not specified	3%	47%	- No ant ABI		i-CAF ess of
BREYANZI ⁴	ECL for anti- extracellular CD19- binding domain	11%	11%	- Rel safi pat	 No evidence for correlation of ADA with clinical outcomes (exposure, efficacy, safety) 	y, ber o
CARVYKTI ⁶	Not specified	Not specified	19.6% (CARTITUDE-1) to 25% (pooled studies)	- Bas ana initi	 Do we need to build knowledge about non-neutralizing vs. neutralizing anti-CAR 	jgest tics o
² YES	ences: RIAH prescribing information (US CARTA prescribing information (ARTUS prescribing information (ÚS), 2021. 5 AB US), 2021. 6 <u>CA</u>	EYANZI prescribing inform ECMA prescribing inform <u>RVYKTI SmPC (EMA), 2</u> tthoff et al, (2020) J Immur		antibodies?	e

Cellular immune response

Mediated by CAR-specific CD8+ cytolytic T cells (CTLs).

CAR-T cells display CAR-derived peptides via HLA class I molecules which can prime CD8+ cells.

CAR peptides from apoptotic or necrotic CAR T cells can be displayed via HLA I or HLA II by antigen-presenting cells and prime CD8+ and CD4+ T cell responses in secondary lymphoid organs The presence of CAR-specific cytolytic T cells after infusion has been associated with treatment failure in some clinical trials

Contrasts with anti-CAR antibodies

May limit the success re-infusion: clinical responses to second or subsequent infusions have generally been suboptimal, with complete remissions typically seen in <25% of patients

- Despite the high complete response rates to the first infusion of CD19-directed CAR-T cells after lymphodepletion in patients with several haematological malignancies, disease recurrence remains an issue, with approximately 30–50% of patients having disease relapse within 12 months.
- •Antigen escape through loss of CD19 expression has been seen in 7–25% of patients, depending on the trial. For those with CD19positive disease relapse, a repeat infusion could be considered

Reimagining Medicine

MONITORING:

specific CD8+ T cell response in

post-infusion

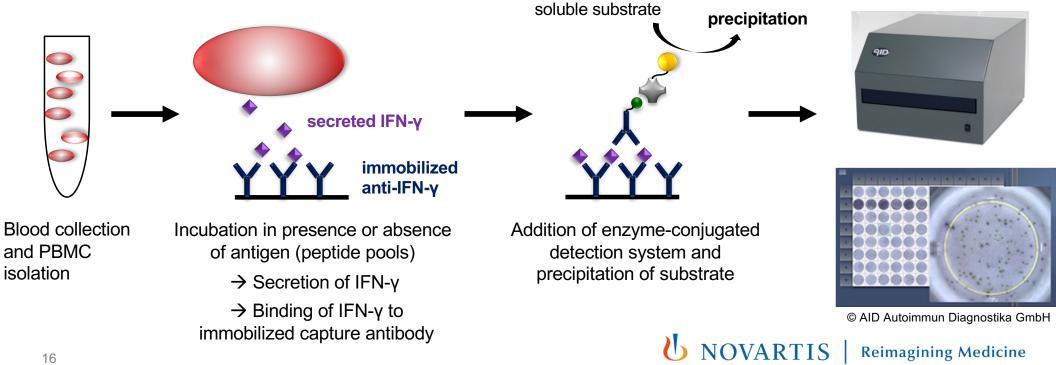
• ELISpot

Chromium

 Intracellular Cytokine

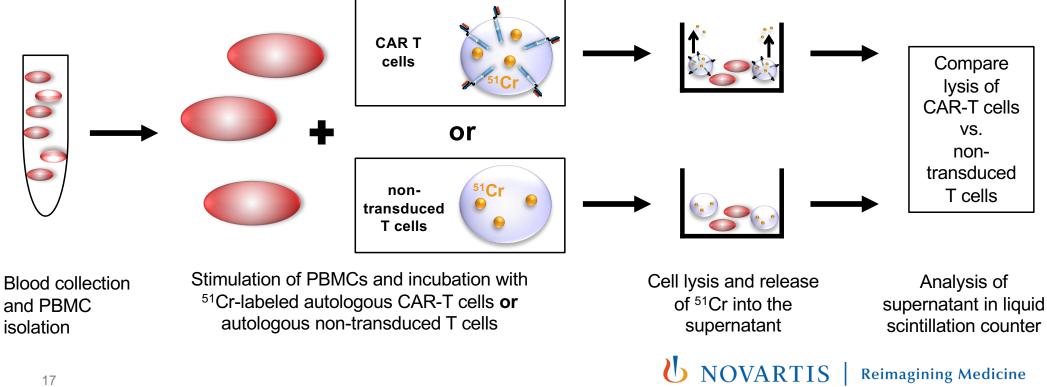
Staining

 Σ

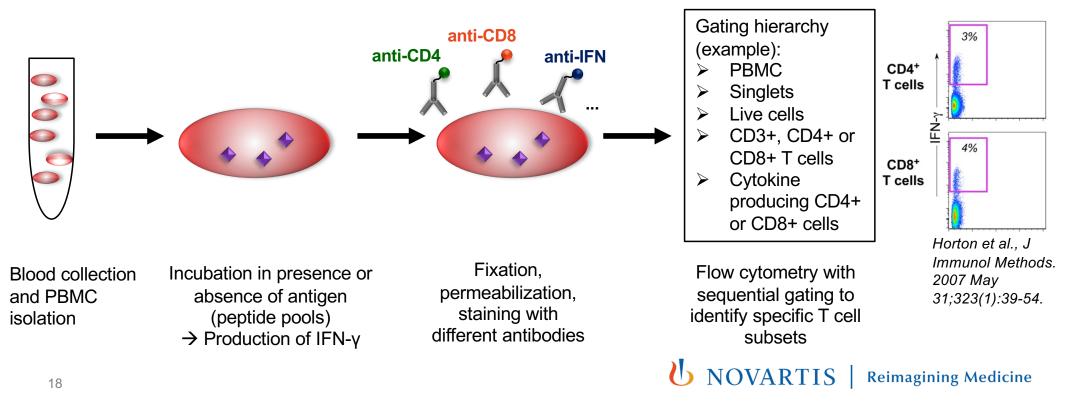

Release Assav

PBMCs

Detection of CAR-


ELISpot Assay

- Enzyme-linked immune absorbent spot (ELISpot) assay to detect cytokine secretion of single cells
- Example: Interferon gamma (IFN-γ) detection as functional measure of antigen-specific cellular immune response to CAR


Chromium Release Assay

- ⁵¹Chromium Release Assay to detect **lysis of target cells**
- Example: CAR-T cell lysis as functional measure of antigen-specific cellular immune response to CAR

Intracellular Cytokine Staining

- Intracellular Cytokine Staining (ICS) to detect cytokine production in single cells
- Example: Interferon gamma (IFN-γ) detection as functional measure of antigen-specific cellular immune response to CAR in T cell sub-populations

Advantages and limitations of different assay formats

	Advantages	Limitations
ELISpot Assay	 High sensitivity Plates can be stored or shipped for spot counting Possibility of cytokine multiplex assay with fluorescent substrates (FluoroSpot) 	 No information about phenotype of cells No simultaneous analysis of cytokines in context of phenotypic markers No quantification of secreted cytokine per cell
Intracellular Cytokine Staining	 Multiplex staining → simultaneous evaluation of multiple cytokines and/or phenotypic markers → parallel characterization of cell populations 	 Standardization of gating required Fixation increases hydrophobicity of cell proteins → increase of non-specific binding → potentially low signal-to-noise ratio
Chromium Release Assay	 Relatively short duration Good well-to-well reproducibility Representative of CAR-T induced lysis <i>in vivo</i> 	 Requires radioactivity Relatively high background release Often low sensitivity Variability due to inconsistent loading with ⁵¹Cr

U NOVARTIS | Reimagining Medicine

Limitation of all assay formats

Patient T-cells

Availabilty

- Prioritized use for release assays & treatment
- Limited availability for IG assays (development & controls)

Quality and consistency

- Challenging logistics (PBMCs or stabilized blood)
- Impact on result quality and relevance

UNOVARTIS | Reimagining Medicine

FMC63 (mouse α-CD19)-derived CAR-T Therapies

Drug	Humoral IG	Cellular IG
Kymriah (Tisagen- lecleucel)	Screening CBA with full CAR	PBMC stimulation with CAR peptide pool followed by Intracellular Cytokine staining (IFN-γ)
Yescarta (Axicabtagene ciloleucel)	1 st tier: Screening LBA vs. source antibody 2 nd tier (only screening positive samples) Confirmatory CBA vs. extracellular CAR (ScFv, hinge, linker) ²	PBMC stimulation with 4 peptide pools (15-mer peptides) followed by ELISpot (IFN-γ) ¹
Breyanzi (Lisocabtagene maraleucel)	Screening LBA with ScFv ("extracellular CD-19-binding domain") ³	PBMC stimulation with irradiated autologous CAR-T cells + IL-2 followed by Chromium release assay (CRA): Lysis of T cells vs. CAR T cells; ELISpot to identify CAR peptides stimulating the identified anti-CAR T cell line ⁴

¹ Brudno et al, Nature Medicine (2020) 26(2): 270-280

² Package Insert - YESCARTA (fda.gov) ³ Package Insert - BREYANZI (fda.gov)

³ <u>Package Insert - BREYANZI (tda.gov)</u> ⁴ Turtle et al. Science Translational Medicine (2016) 8(355): 355ra116 **U** NOVARTIS | Reimagining Medicine

Cellular immunogenicity

Tisagenlecleucel:

Very low cellular immunogenicity observed in trials:

- Net responses < 1%
- Few cases of slightly increased responses were not correlated with clinical outcome.

Liso-cel

- Positive response definition in CRA:
 - Stimulated post-dose PBMCs lyse CAR-T cells but not non-transduced T cells.
 - Pre-dose PBMCs must lyse neither CAR-T nor non-transduced cells.
- 6 /11 patients show CAR-T cell lysis after first and/or second CAR-T cell infusion.
- Second step: T cells from one cell-based immunogenicity positive patient further assessed in IFN-γ ELISpot => Two scFv peptides found to stimulate IFN-γ expression more than T cells alone

Source: Turtle et al. Science Translational Medicine (2016) 8(355): 355ra116

Mitigation of anti-CAR cellular immunity (1/2)

Mouse scFv FMC63

- Used in several CD19-specific CARs
- Turtle et al., (2016)

T cell-mediated anti-CAR responses have been detected, to a lesser extent, with the use of fully human CAR constructs.

Fully human constructs

Intensified lymphodepletion (cyclophosphamide and fludarabine)

- identified as a factor that might reduce the extent of anti-CAR cellular immunity
- conditioning regimens containing both of these agents are currently considered the standard of care approach prior to initial administration of CD19-targeted CAR-T cells.

Mitigation of anti-CAR cellular immunity (2/2)

Other parts of the transgene

- Brudno et al., (2020)
- 3/19 patients
- signal peptide linker
- hinge domains

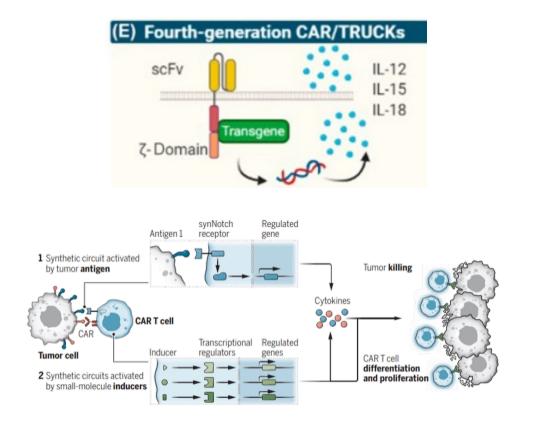
Sequence analysis of the fusion sites between human components of the CAR

Preliminary computational analysis (NetMHC)

-> CAR sequences not encoded by the human genome.

Further screening based on MHC binding prediction

-> fusion site between CD28 and 4-1BB: seven 9-mer peptide sequences with <100nM affinity to several MHC class I molecules.


Extension of CD28 sequence by two amino acids

=> only one predicted 9-mer peptide with affinity <100nmM

Sommermeyer et al (2017)

U NOVARTIS | Reimagining Medicine

Next generation

Wagner et al (2021) Salazar-Cavazos and Altan-Bonnet (2022)

Multiple antigen-targeting CARs

Transgene integration at defined genomic loci

Receptor – Ligand interaction

Inclusion of cytokines to improve efficacy

-> TRUCKS (T-cell redirected for universal cytokine-mediated killing)

Conditional expression of CARs

-> Temporal or / and spatial regulation of CAR activity

Use in other immune cells

e.g Natural killer cells

Allogenic CAR-Ts => KO of endogenous TCR to reduce GVHD and immune rejection risk

e.g. host T cell mediated immune response leading to the clearance of allogenic double KO CAR-T (Benjamin et al., 2020)

Solid tumour antigen targets

Targets not expressed on B cells => increased risk of inducing both cellular and humoral anti-CAR immunity

Reimagining Medicine

Multiple layers of immunogenicity to be considered

the foreignness of the cells (autologous vs allogeneic)

whether they are genetically modified and/or are extensively passaged

the nature of any transgene/gene editing

the mechanism of action

Co-administration of immunomodulatory molecules

Trace amounts of vector used to deliver transgene

UNOVARTIS | Reimagining Medicine

YYXYYXYYY \mathbf{x} \mathbf{x} YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYイントレントレイン YYYYYYYYYY**XYYXYYXX** YYXYYXYYYYYYYYYYYYYYYYXYYXYYY イントレントレント $YY \downarrow Y \downarrow Y \downarrow Y \downarrow Y Y Y Y$ YYYYYYYYYY \mathbf{x} YYYYYYYYYYYイントレントレイン YYYYYYYYYYイントレントレイン YYYYYYYYYYイントレントレント YYYYYYYYYYY \mathbf{x} YYYYYYYYYY $YY \downarrow YY \downarrow YY \downarrow YY Y$ イントレントレイン $YY \downarrow YY \downarrow YY \downarrow YY Y$ YYXYYXYYYYYYYYYYYYYYYYYYYYYYYYY**YXXYXXXXX** YYYYYYYYYYYYXYYXYYYY

Thank you

PK Sciences

Christian Joffroy Fraser McBlane Grzegorz Terszowski

Preclinical Safety

Franck Brennan Andrea Kissling

NIBR Biologics Center

Annette Karle Elisabetta Traggiai

Former colleagues

Bernd Potthoff Britta Zehnpfennig Denise Sickert Sebastian Spindeldreher

UNOVARTIS | Reimagining Medicine