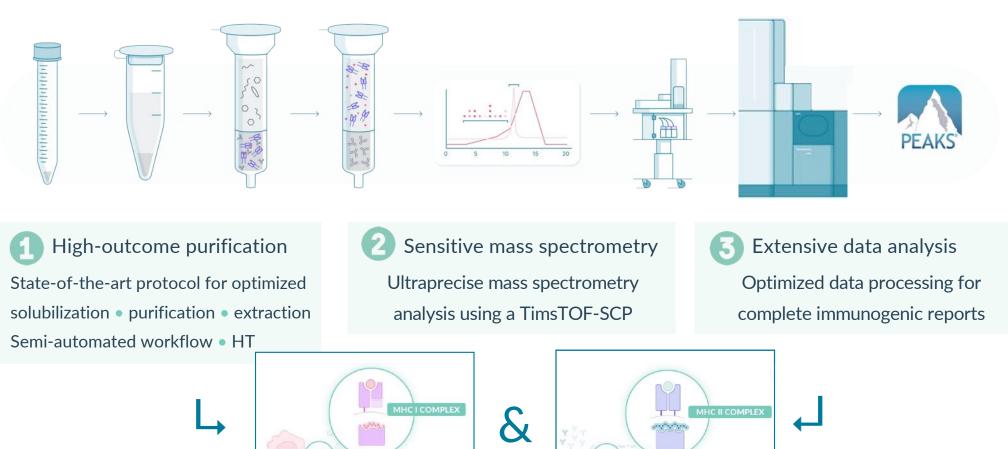
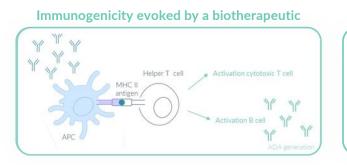
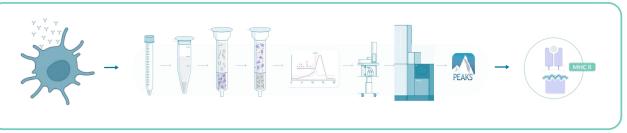

High-Sensitive MAPPS Analysis for High-Confident Immunogenicity Risk Assessment

Elise Pepermans


IMMUNESPEC Advanced immunopeptidomics platform


Identification of MHC presented peptides by affinity purification & MS based identification

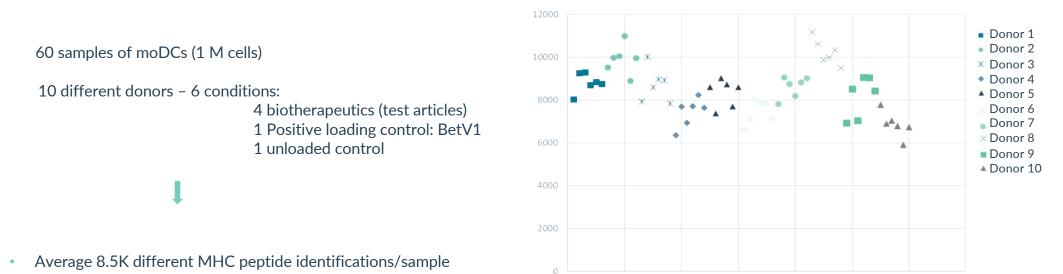
- Identification of neoantigens/tumor antigens for development of immunotherapy/ precision medicine
- Identification of pathogen derived antigens for prophylactic vaccine development $= \hat{eta}$
- Immunogenicity assessment of biotherapeutics (MAPPS)
 - → High-sensitivity immunopeptidomics analysis: maximize number of identified peptides
 - \rightarrow Minimal sample input
 - \rightarrow Semi-automated platform with high throughput capacity
 - → Larger screening panels


IMMUNESPEC Advanced immunopeptidomics platform

MAPPS assay. Risk assessment of your biotherapeutic agent.

MAPPS assay: identification MHC-II presented peptides from APCs loaded with a biotherapeutic

All protein therapeutics: potential to elicit unwanted immunogenicity (effect on safety, efficacy, PK, PD)


Health authorities: IND submission - requirement thorough immunogenicity risk assessment

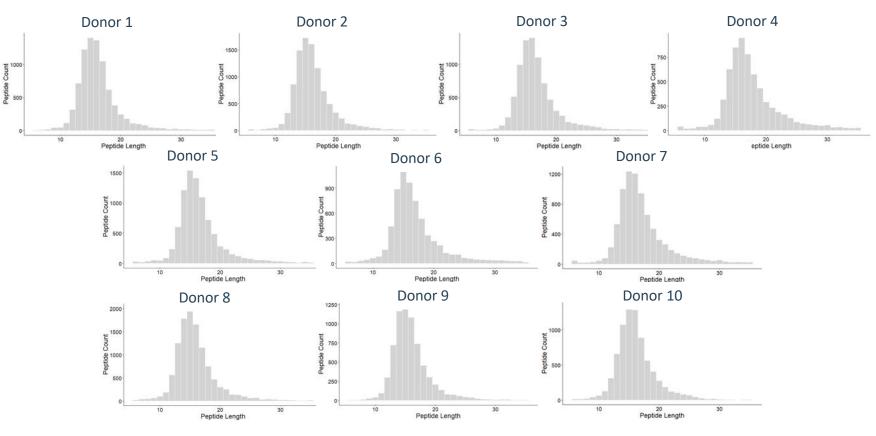
→ Preclinical assays for evaluation and mitigation of immunogenicity risk

MAPPS: Measurement of truly presented T cell epitopes

- Immunopeptidomics analysis of antigen presenting cells loaded in vitro with the target biotherapeutic
- Pinpointing all the T cell epitopes of the target biotherapeutic (uptake + lysosomal processing + MHC presentation)
- Overview of putative T-cell immunogenic clusters: immunogenic profile of the biotherapeutic
- Vast majority identified peptides self-peptides: high-sensitivity needed not to miss T cell epitopes
- Correlation immunogenicity risk and # presented peptides & # presented clusters

in collaboration with ImmunXperts

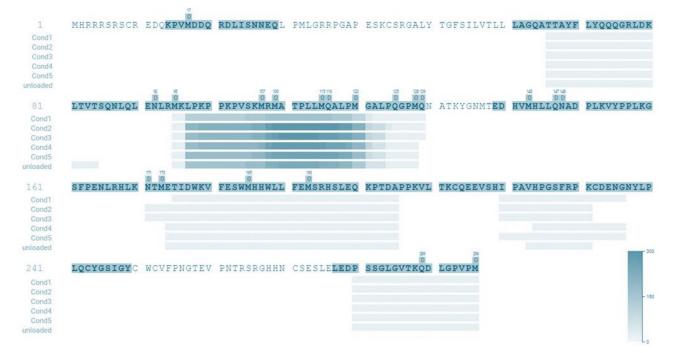
• In total 91.029 different MHC peptides identified


different MHC-II presented peptides identified per sample

- High numbers of presented MHC peptides are identified using only 1M moDCs per sample
- Per donor: reproducible # MHC peptides

in collaboration with ImmunXperts

QC: Length distribution of identified peptides


Collaboration ImmunXperts

• Size distribution of identified peptides is conform for MHC-II presented peptides

in collaboration with ImmunXperts ad Solution Corpusy

QC: MHC-II presented self-peptides in different samples from the same donor

• MAPPS analysis of samples from same donor: same presentation pattern (self-peptides): reproducibility

in collaboration with ImmunXperts a crowner company

Positive loading control: BetV1

Distribution of identified immune peptides from BetV1

	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
#Total different peptides	8980	8986	8846	7864	9097	7976	9465	10546	9047	6455
#Different BetV1 peptides	74	33	27	38	69	31	36	78	21	11
% BetV1 peptides	0,8%	0,4%	0,3%	0,5%	0,8%	0,4%	0,4%	0,7%	0,2%	0,2%

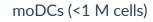
- 11 to 78 different BetV1 derived peptides/sample
- Total of 218 different BetV1 derived peptides
- Identified peptides in putative immunogenic clusters.

• Numerous overlapping MHC-presented peptides are identified, a crucial factor for pinpointing putative immunogenic clusters with high confidence

in collaboration with ImmunXperts a crowner compary

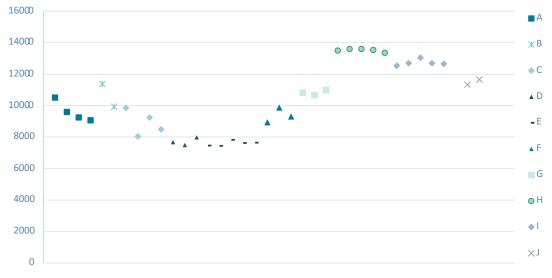
Positive loading control: BetV1

	MGVFNYETET	TSVIPAARLF	KAFILDGDNL	FPKVAPQAIS	SVENIEGNGG	PGTIKKISFP	EGFPFKYVKD	RVDEVDHINF
01136								
01164								
01171								
01157								
01143								
01173								
01113								
01168								
01160								
								-
						0		II.
	KYNYSVIEGG	PIGDTLEKIS	NEIKIVATPD	GGSILKISNK	YHTKGDHEVK	AEQVKASKEM	GETLLRAVES	YLLAHSDAYN
1136								
1164								
1171								
1157			1000					
1143								
1173								
1175								
01173 01175 01113 01168 01160								


Heat map Betv1 - distribution of identified immune peptides per donor

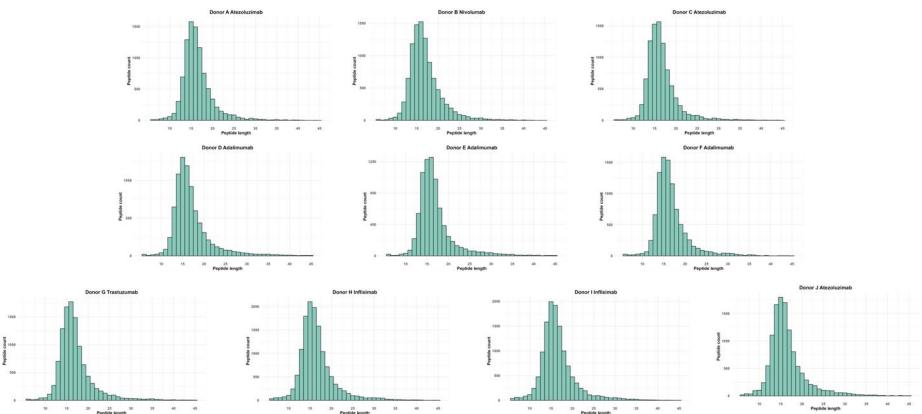
- Identified peptides in putative immunogenic clusters.
- Different HLA genotype: different clusters

- ⇒ High numbers of presented MHC peptides are identified using only 1M moDCs per sample
- ⇒ Reproducibility between samples
- ⇒ Putative immunogenic regions are identified by multiple peptides: high-confidence immunogenic profile
- of test article


in collaboration with

Explorative study to compare immunogenic profile from different biologics

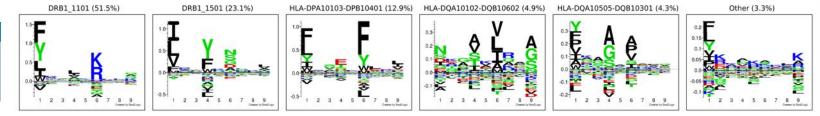
10 different donors 5 different biologics

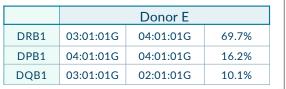

• #Total different MHC peptides: 7437 - 13595

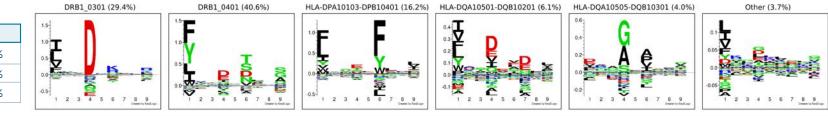
different MHC-II presented peptides identified per sample

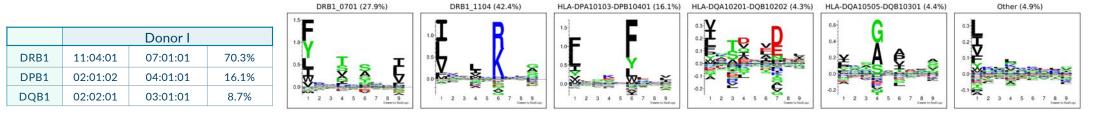
- High numbers of presented MHC peptides are identified using < 1M moDCs per sample
- Per donor: reproducible # MHC peptides

in collaboration with


QC: Length distribution of identified peptides


• Size distribution of identified peptides is conform for MHC-II presented peptides

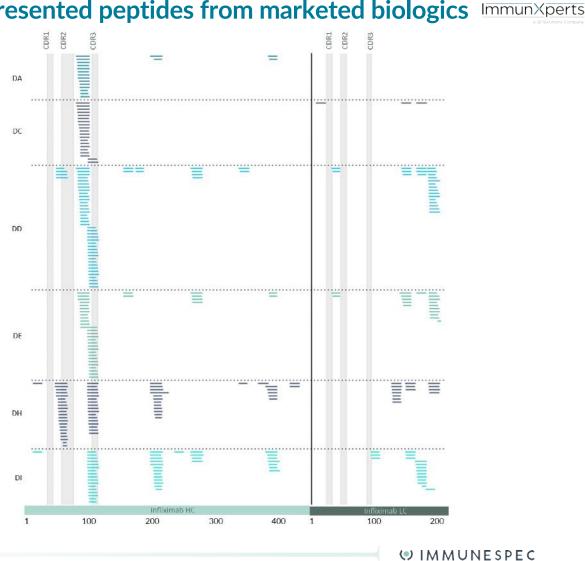

in collaboration with


QC: MHC Motif Decon Tool: Attribution identified peptides to HLA-DR, HLA-DP and HLA-DQ

	Donor B					
DRB1	11:01:01	15:01:01	74.6%			
DPB1	04:01:01	04:01:01	12.9%			
DQB1	06:02:01	03:01:01	9.2%			

- HLA-DR presented peptides: dominant part of all identified MHC-II peptides
- HLA-DP & HLA-DQ presented peptides: subsidiary part of all identified MHC-II peptides

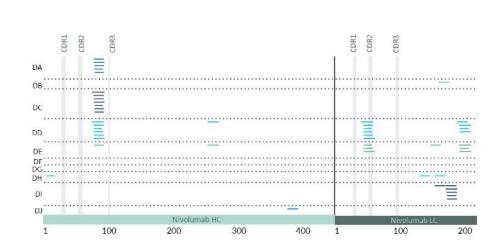
MHC Motif Decon Tool: Morten Nielsen (Kaabinejadian et al, 2022)


MHC-II	Presented	peptides	from	Infliximab

	Total peptides identified (PSM)	Total different peptides	# Heavy chain peptides	# Light chain peptides	% Infliximab peptides
А	18085	9060	18	0	0.20%
С	17155	8476	20	3	0.27%
D	16971	7512	53	23	1.01%
E	16961	7620	36	18	0.71%
н	28257	13516	60	14	0.55%
I	27225	12690	43	16	0.46%

Infliximab: mAb with high prevalence ADAs - relatively high numbers of presented peptides

•


• Clusters: in HC CDR2 & CDR3 but most peptides match to HC & LC constant region

in collaboration with ImmunXperts

MHC-II Presented peptides from Nivolumab

	Total peptides identified (PSM)	Total different peptides	# Heavy chain peptides	# Light chain peptides	% Nivolumab peptides
А	18978	9572	5	0	0.05%
В	20068	9931	0	1	0.01%
С	15910	8041	6	0	0.07%
D	17678	7846	7	10	0.22%
Е	16747	7437	2	7	0.12%
F	21004	9912	0	0	0.00%
G	21940	10649	0	0	0.00%
Н	28305	13581	1	2	0.02%
I	27190	12694	0	6	0.05%
J	24382	11333	1	0	0.01%

- Nivolumab: mAb with low prevalence ADAs relatively low numbers of presented peptides
- Clusters: in LC CDR2 but most peptides match to HC & LC constant region

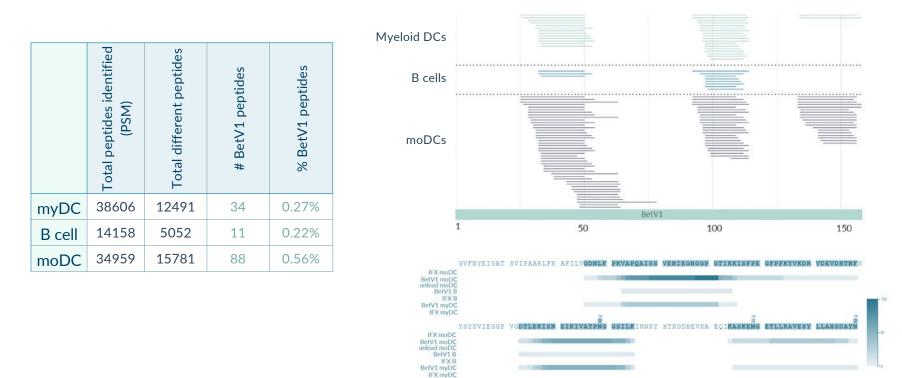
⇒ Identification of HLA-DR, -DP and -DQ peptides

⇒ HLA-DR presented peptides: dominant part of all identified MHC peptides
 HLA-DP & HLA-DQ presented peptides: subsidiary (but non neglectable) part of all identified MHC-II peptides

⇒ Correlation between # identified peptides and #identified clusters in MAPPS assay and immunogenicity incidence & immunogenicity risk

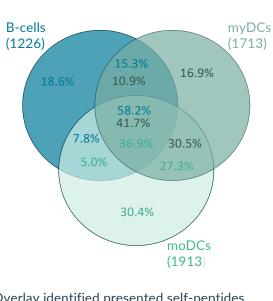
One donor – comparison MAPPS analysis using moDCs vs myeloid DCs & B cells

- B-cells (#800 k): BetV1 & Infliximab
- Myeloid DCs (#520k): BetV1 & Infliximab

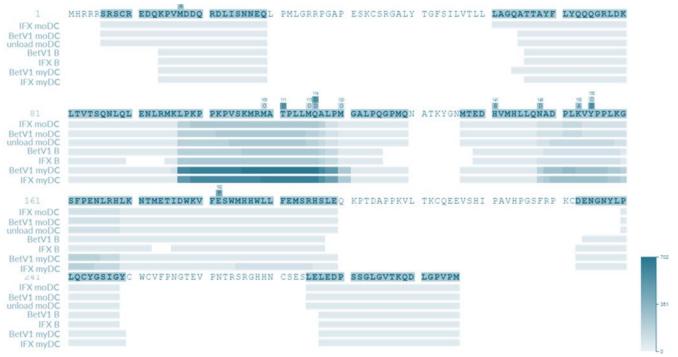


different MHC-II presented peptides identified per sample

Western Blot showing MHC-II expression levels in different cell types (Equivalent of 750 cells loaded per lane)


- High sensitivity allows MAPPS analysis of true APCs (B cells #5k myeloid DC #12k moDCs #16k)
- Per sample type: reproducible # identified MHC-II peptides
- #Identified peptides correlate with HLA expression levels

Comparison MAPPS analysis of BetV1 loaded cells: B cells / myeloid DC / moDCs



- Same clusters identified in B cells & myDCs found in moDCs from same donor (but higher # peptides)
- True APCs (myDCs & B cells) can be used in high-sensitive MAPPS assay

Comparison MAPPS analysis B cells / Myeloid DCs / moDCs

Overlay identified presented self-peptides at protein level in 3 cell types

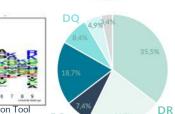
Heat map HG2A - distribution of identified immune peptides per sample (different cell types- same donor)

- Differences in presented peptide repertoire at protein level
- For proteins from which relatively high # peptides are presented in the three cell types: presentation patterns are highly similar

DPB1 20:01:01 04:02:01 DQB1 06:02:01 03:02:01 DRB1_0404 (33.8%) DRB1 1501 (22.0%) DPA010103-DPB12001(17.9%) DQA10102-DQB10602 (7.4%) DPA010103-DPB10402 (10.7%) DQA10301-DQB10302 (1.5%) Other (6.6%) moDCs DR DP DRB1_0404 (33.7%) DRB1 1501 (24.9%) DPA010103-DPB10402 (10.3%) DPA010103-DPB12001(14.8%) DOA10102-DOB10602 (7.8%) DQA10301-DQB10302 (2,9%) Other (5.6%) myDC DRB1_0404 (35.5%) DRB1_1501 (21.7%) DPA010103-DPB10402 (7.4%) DPA010103-DPB12001(18.7%) Other (3.4%) DQA10102-DQB10602 (8.4%) DQA10301-DQB10302 (4.9%) B cells MHC Motif Decon Tool DP 21.7%

Comparison MAPPS analysis of BetV1 loaded cells: B cells / myeloid DC / moDCs

Donor X

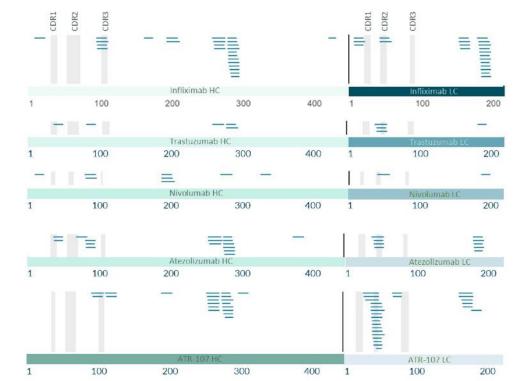

15:01:01

04:01:01

DRB1

(Kaabinejadian et al, 2022) Portion of identified DR / DP /DQ peptides highly similar between different cell types from same donor () IMMUNESPEC

in collaboration with



Morten Nielsen

DR

Comparison MAPPS analysis of different biologics loaded on moDCs

	Total peptides identified (PSM)	Total different peptides	# Heavy Chain peptides	# Light Chain peptides	% Biologic peptides
Infliximab	34904	15797	25	21	0.29%
Trastuzumab	33790	15251	5	4	0.06%
Nivolumab	32250	15290	8	2	0.08%
Atezolizumab	34844	15644	16	9	0.16%
ATR107	34330	15666	20	25	0.29%
Unloaded	34846	15753	0	0	0%

- Correlation between # identified peptides and #identified clusters in MAPPS assay and immunogenicity incidence & immunogenicity risk
- High-sensitivity of MAPPS assay: high-confidence immunogenic profile of test article

⇒ High sensitivity allows MAPPS analysis of reduced number of moDCs and of true APCs

- ⇒ # Identified peptides correlate with HLA expression levels
- ⇒ Correlation between # identified peptides and #identified clusters in MAPPS assay and immunogenicity incidence & immunogenicity risk
- ⇒ Comparison B cells myeloid DCs moDCs:
- Portion of identified DR / DP /DQ peptides highly similar between different cell types from same donor
- Presentation patterns for same protein are highly similar

⇒ High-sensitivity of MAPPS assay: high-confidence immunogenic profile of biotherapeutic

Conclusion

- Correlation between # identified peptides and #identified clusters in MAPPS assay and immunogenicity incidence & immunogenicity risk
- MAPPS assay: majority identified peptides: self peptides
 - ⇒ high-sensitivity needed for high confident immunogenicity risk assessment
 - Aximized # identified peptides: certainty about immunogenic profile of biotherapeutic
- High-sensitive, high-throughput immunopeptidomics platform for ultrasensitive MAPPS assay
 - ⇒ Reduced requirement sample input
- Use limited # cells
- Less biotherapeutic required for loading cells
- Large screening panels possible
- use moDCs / myDCs / B cells / cyno moDCs
- ⇒ Pinpoint putative immunogenic clusters with great accuracy
- ⇒ Full overview including DR / DP / DQ presented peptides
- ⇒ High throughput fast analysis

High-confident immunogenic profiling via MAPPS for reliable immunogenicity risk assessment

- ⇒ enhanced compound selection & modulation
- \Rightarrow higher efficacy () IMMUNESPEC
- ⇒ safety

Acknowledgements

IMMUNE © SPEC Geert Baggerman Lauren Thijs Thomas Van Doninck Lieselotte Van Antwerpen Immun×perts ^{a O'Soutrons Corrector} Sofie Pattijn Chloé Ackaert Aurelie Mazy

ImmuneSpec. Meet the team.

 Thomas Van Doninck
 Geert Baggerman
 Elise Pepermans
 Kurt Boonen
 Lauren Thijs
 Lieselotte Van Antwerpen
 Pieter-Paul Strybol

 SCIENTIST/PM
 CSO & CO-FOUNDER
 CEO & CO-FOUNDER
 CDO & CO-FOUNDER
 LAB TECHNICIAN
 LAB TECHNICIAN
 BUSINESS DEVELOPMENT