Immunogenicity assessment at Novartis

Dr. Anette Karle Lisbon April 22, 2024

UNOVARTIS | Reimagining Medicine

This presentation includes Novartis information and content is subject to copyright. The opinions and views expressed in this slide-deck are those of the presenters and do not necessarily constitute opinions or recommendations of Novartis. This presentation is accurate at the time of presentation.

2

Agenda

Overaching immunogenicity strategy at Novartis Immunogenicity risk assessment questionnaire In silico tools for immunogenicity potential assessment In vitro tools for immunogenicity potential assessment **Case studies** Summary

Overaching immunogenicity strategy at Novartis

UNOVARTIS Reimagining Medicine

Immunogenicity strategy for biotherapeutics

UNOVARTIS | Reimagining Medicine

ImmRAQ (Immunogenicity risk assessment questionnaire

- Novartis fills out the questionnaire once a target and tentative indication have been proposed, even though some questions particularly related to candidate design and material critical quality attributes cannot be addressed at this stage.
- The ImmRAQ is considered a living document and is updated once additional relevant information is available.
- The risk assessment covers the ability to generate an immune response based on a multitude of factors that will be discussed in the following slides, as well as the safety consequence of generating immunogenicity based on the target, MoA and drug modality.

Mechanism of action

- Is the compound immune activating or suppressing?
- Is the compound agonistic/antagonistic?

Target location

- Will target engagement trigger ٠ internalization?
- Is the target expressed on immune ٠ cells?

Design

- What is the format of the molecule, is part of it endogenous?
- Does the compound contain neoepitopes or non-natural junctions?
- Can the sequence be optimized?
- What is the extent of sequence humanness?
- Are there sequence stretches with pathogen similarity?
- What is the size of the drug
- What is the half-life of the compound?

Immune complex formation

- Are there multimeric soluble ligands?
- Can formats be chosen with lower cross-linking potential?
- Does the drug contain repetitive structures?

Literature screen

- Any data on pre-existing immunity?
- What is known from approaches hitting same target?
- What can we learn from knock-out models or human diseases?

Immune status of the patient

- Is the indication an immunosuppressive/autoimmune condition?
- Are concomitant medications applied?
- What is the location and route of administation?

Critical quality attributes

- What is the level of degradataion and aggregation products?
- Are there PTMs that need to be considered?
- Consider glyco patterns
- What is the level of impurities?
- Consider formulation

Picture created with BioRender.com

In silico tools for immunogenicity potential assessment

UNOVARTIS Reimagining Medicine

Addressing potential HLA class II binders

- 1. Predict HLA class II binding hotspots via MAPPs-based iSHAPe algorithm and use to rank large candidate sets. Assign higher weight on CDRs (usually higher T cell presursor rates)
- 2. Randomize sequences also identified via MAPPs to find non-binders.
 - iSHAPe algorithm is used but other algorithms are used if appropriate.
 - Consider structural aspects.
 - Reconfirm absent binding via MAPPs.

Addressing sequence similarity to proteins

- 1. Identify stretches with sequence identity
- 2. Identify analogous sequences that may be recognized by same T cells (slightly modified but containing the same T cell facing residues)
- > Compare...
 - drug and human proteins (abundant or low concentration?)
 - Drug and host cell proteins
 - Drug and pathogens
- Main challenge: Is there a «normal level» of sequence identity or analogy?

UNOVARTIS | Reimagining Medicine

In vitro assays for immunogenicity potential assessment

UNOVARTIS

DC maturation assay

- Mostly applied together with MAPPs
- Applied for «high risk» and partially also for «intermediate risk» projects
- Used to evaluate whether drugs have cell maturation as risk factor

DC uptake assay (exploratory)

- Mostly applied together with MAPPs
- Applied for «high risk» and partially also for «intermediate risk» projects
- Promising correlation with antigen
 presentation via MAPPs observed

MAPPs assay:

- Applied for «high risk» and partially also for «intermediate risk» projects
- Applied to rank candidates, study protein fusion effects and novel scaffolds and to support root cause investigations
- More and more deimmunization efforts are supported by MAPPs in conjunction with in silico tools

Pre-existing ADA assay

- The impact of pre-existing antidrug-antibodies (pADA) is not fully understood. Currently, the assay is applied on projects to gather knowledge that may help to better understand the relevance of pADA.
- Based on the theoretical concern regarding pADA, the data is used for candidate ranking in case drug candidates can't be differentiated by other parameters or assays.
- Applied for «high risk» and partially also for «intermediate risk» projects

>100 healthy donor sera

T cell assay

- Currently in internal implementation
- Difficult to find reliable assay setup that can be applied on the same cells as MAPPs
- Not yet applied regularly
- Aim is to apply for «high risk» projects in the future and to support de-immunization approaches in conjunction with MAPPs and in silico tools

Timing and depth of investigation in preclinical and clinical stages

UNOVARTIS | Reimagining Medicine

Timing and depth of investigation depends on the risk assessment of the biologics

Severity of risk – Depth of assessment

Low Risk

Preclinically:

Only ADA screening assay

Clinical Phase 1:

- Screening + Confirmatory + Titer
- Batch sample analysis
- Clinical pivotal studies (II/III)
- Neutralization testing (nAb assay)

High Risk (additionally)

Preclinically:

- Confirmatory + Titer
- Immunogenicity potential assessment assays

Clinical Phase 1:

- nAb characterization
- Online analysis
- Other potential investigations may include epitope mapping, isotyping ...

Case studies

Biological relevance of MAPPs

- Meunier/Hamze et al.: IMI-ABIRISK project with healthy donors. MAPPs by Novartis. T cell epitope mapping by Bernard Maillère.
- Cassotta et al.: MAPPs + T cell epitope mapping on natalizumab-specific EBV B cell clones from 2 patients with immunogenicity.
- Natalizumab-specific B cells able to recognize/internalize natalizumab via BCR and present peptide sequence verified as natalizumab-specific T cell epitope.
- Strong overlap between presented peptides and T cell epitopes and high similarity between the two studies

	natalizumab heavy chain		FRI	CORL 1	FRI (ORI	FR3	C283 FR4	
1	T cell epitopes from treated patients	n = 2						
2	T cell epitopes from drug-naïve healthy donors	n = 12						
1	MAPPs on patient EBV-B cells	n = 2						
2	MAPPs on drug-naïve healthy donors	n = 18						
							//////	_
	natalizumab light chain		FR1		R2 (082	FR3	CDRA FR4	
1	T cell epitopes from treated patients	n = 2						
2	T cell epitopes from drug-naïve healthy donors	n = 12						
1	MAPPs on patient EBV-B cells	n = 2						
2	MAPPs on drug-naïve healthy donors	n = 18						

Karle AC. , doi: 10.3389/fimmu.2020.00698.

¹ Cassotta A et. al. , doi: 10.1038/s41591-019-0568-2.

² Meunier S et al., doi: 10.1038/s41423-019-0304-3.

Biological relevance of MAPPs

ABIRISK project:

- MAPPs by Novartis on healthy donors.
- T cell epitope mapping by Bernard Maillère on a different set of healthy donors as well as patients with IBD or RA that had developed immunogenicity against infliximab.
- Despite the use of different donors, a high degree of similarity observed for both datasets in terms of the location of presented sequence regions and T cell epitopes

Summary

UNOVARTIS | Reimagining Medicine

Summary

- Immunogenicity comes with varying degrees of clinical consequences, and it is important to assess the likelihood for immunogenicity and potential associated risks early on.
- Risk assessment documents can be useful tools for project teams to assess and reduce risks.
- Different cell-based assays can be applied to evaluate the immunogenicity potential of biotherapeutics although absolute translation to the clinics remains difficult.

Acknowledgement

Key members that were involved in the presented case studies

Stephan Koepke Sascha Gottlieb Anne Winterberg Michael Gutknecht Elisabetta Traggiai Sebastian Spindeldreher Bernard Maillère Sylvain Meunier Moustafa Hamze

Anette Karle

Thank you

UNOVARTIS | Reimagining Medicine

Immunogenicity assessment at Novartis