MHC Class I and its Importance for the Immunogenicity of Novel Modalities

Zuben E Sauna

Division of Hemostasis Office of Plasma Protein Therapeutics Office of Therapeutic Products Center for Biologics Evaluation and Research U.S. Food and Drug Administration

Morten Nielsen

Bioinformatics Department of Health Technology The Technical University of Denmark

15th Open Scientific EIP Symposium on Immunogenicity of Biopharmaceuticals, Lisbon April 23rd, 2024

A cknowledgements

Vijaya Simhadri

Daniel Lagassé

Wojciech Jankowski

ki Pratima Bajgain

Sharon Vijayanand

Atul Rawal

Yun-Jong Park

Jiayi Ou

CBER/FDA Chava Kimchi-Sarfaty Basil "Dov" Golding

ImmuneSpec Elise Pepermans

ImmunXperts Sofie Pattyn

Novel modalities & immunogenicity

Gene therapies, cell therapies (e.g., CAR T cells) and CRISPR Cas-based gene editors hold immense promise in treating previously intractable diseases.

Understanding the immune response to these modalities is pivotal for improving safety and therapeutic efficacy.

Pre-existing and induced immune responses are a key concern during the development and regulation of these emerging technologies.

Methods used to predict immunogenicity

	METHOD	IMMUNE PROCESS PROBED	WHAT WE LEARN
	In silico MHC-peptide binding predictions	Antigen presentation	Potential T cell epitopes
Thr	Peptide/MHC-binding assay	Antigen presentation	Measures peptide-MHC binding affinity
oughput	Human blood-derived cell-based assays (DCs as APCs; T cells as effector cells)	Depends on assay design	T cell activation measured by proliferation or cytokine production
	MHC tetramer-guided epitope mapping (TGEM)	Antigen recognition	Mapping of MHC-restricted T cell epitopes
Cost & complexity	MHC-associated peptide proteomics (MAPPs) assay	Antigen processing and presentation	Identifies naturally processed and presented peptide antigens
	Protein-specific T cell amplification	Antigen processing, presentation, recognition	Generation of antigen-specific T cell lines from naïve PBMC donors
	HLA transgenic mice	All	Assessment of immunogenicity risk in context of human HLA

Do the methods used to predict the immunogenicity of therapeutic proteins work in the real world (a case study)

Factor VIIa

NO reports of anti-FVIIa antibodies in hemophilia patients

FVIIa variant, Vatreptacog alfa {V158D, E296V, M298Q}

Incidence of anti-FVIIa antibodies = **11.1**%

Company Announcement

28 September 2012

Novo Nordisk discontinues development of vatreptacog alfa following analysis of phase 3 results

Novo Nordisk today announced the decision to discontinue the development of vatreptacog alfa, a fast-acting recombinant factor VIIa analogue for haemophilia patients with inhibitors. The decision follows analysis of the data from the phase 3a trial adeptTM2. On 9 August, Novo Nordisk announced that a few patients in the trial had developed antidrug antibodies to vatreptacog alfa, one patient with a potentially neutralising effect.

Post-hoc assessment of Vatreptacog alfa immunogenicity

ASSAY/METHOD	RESULTS
Do mutant peptides bind HLA-II molecules with high affinity (in silico)?	Mutant peptides bind with high affinity to some but not all HLA-II variants
Do mutant peptides bind HLA-II molecules with high affinity (in vitro)?	Confirmed in silico findings
Are mutant peptides presented on HLA-II molecules (MAPPs)?	YES
Do mutant peptides that bind with high affinity elicit a T-cell response?	YES
Are there any associations with clinical outcomes?	ADA-positive patients carry HLA-II that bind to mutant peptide with high affinity

Lamberth, Reedtz-Runge, Simon, Klementyeva, Pandey, Padkjær, Pascal, León, Gudme, Buus & Sauna. Science Transl. Med. 9: eaag1286

CD4 T cells are MHC-II restricted and pre-programmed for helper functions such as activation of B cells to secrete antibodies.

Antigens ingested into endocytic compartments of macrophages, dendritic cells or B cells are presented to CD4+ T cells as peptides bound to MHC II molecules.

Therapeutic proteins are almost always extracellular and immune responses are driven via the MHC II/CD4+.

Bio-analytics for assessing the immune response to protein therapies largely focus on accurate determination of anti-drug antibodies and determining whether these antibodies are neutralizing. CD8 T cells are MHC I-restricted and pre-programmed for cytotoxic functions directly killing target cells.

Endogenously synthesized antigens in the cytosol of all cells are presented to CD8+ T cells as peptides bound to MHC I molecules.

Novel modalities elicit diverse immune responses based on the route of administration; delivery system used etc.

Bio-analytics for assessing the immune response to novel modalities cannot rely on the identification and characterization of anti-drug antibodies. These assays must be fit-for-purpose and be carefully designed for each application.

Gene therapy & immunogenicity

AAV vector particles undergo proteasomal degradation, capsid-derived peptides are presented by MHC Class I (MHC I) and trigger CD8⁺ cytotoxic T cells.

In an early liver-directed gene therapy trial for hemophilia B a loss of factor IX transgene expression was correlated with a CD8⁺ T cell response against the viral capsid.

CD8⁺ T cell responses to AAV capsid have also been observed in muscle-directed gene transfer.

A T-cell response was induced to the α -1-antitrypsin transgene product and was associated with a polymorphism present in the subject.

subject.
 Gene therapy for Duchenne muscular dystrophy using three products with different transgenes, under different promoters and packaged in different AAV serotypes all showed a cytotoxic T-cell immune response against dystrophin.

CAR T cells & immunogenicity

Pre-existing and/or treatment- induced immunity to chimeric antigen receptor (CAR) constructs containing mouse- derived single-chain variable fragments are associated with treatment failure in some patients.

Novel technologies to use allogeneic CAR T cells will increase the likelihood of anti- CAR immune responses.

The presence of CAR-specific cytolytic T cells after infusion has been associated with treatment failure in some studies.

T cell-mediated anti-CAR responses have been detected in secondgeneration CD19-directed CAR T cells with mouse-based scFvs and, to a lesser extent, with those that use fully human CAR constructs.

In several haematological malignancies, CAR T cell therapy results in a high complete response rate to the first infusion but 30–50% of patients relapse.

Populations of cytotoxic T cells with specificity towards the CAR have been shown to expand after initial infusion but clinical responses to the second infusion are suboptimal.

CRISPR Cas-Gene editors & immunogenicity

For in vivo clinical applications of CRISPR Cas immunogenicity is a key concern.

Cas-proteins are of bacterial origin: High immunogenicity risk category per FDA Guidance.

Pre-existing antibodies to Cas9 and pre-existing T- and B-cell responses to Cas9 have been reported.

Genome editing in mouse liver was accompanied by: Increase in CD8+ T cells. Cytotoxic T cell response. Hepatocyte apoptosis. Complete elimination of genome-edited cells.

Efficient AAV CRISPR-mediated dystrophin restoration was demonstrated in canine DMD models. However, Cas9-specific immune responses were a critical barrier for successful AAV CRISPR therapy. Serum Cas9 antibody and PBMC ELISpot confirmed Cas9-specific responses in both dogs.

Cas 9 as a model for evaluating the immunogenicity of novel modalities

Pre-existing antibodies to many novel modalities makes the establishment of cut-points for identification of anti-drug antibodies much more challenging.

Clinical evidence suggests that many novel modalities function even in the presence of anti-drug antibodies, however the CD8+ responses present a significant barrier.

Efficient genome editing occurred in mouse liver with pre-existing SaCas9 immunity. <u>HOWEVER</u>:

Genome editing was accompanied by an increase in CD8+ T cells in the liver and a cytotoxic T cell response.

Results: Hepatocyte apoptosis, loss of recombinant AAV genomes, and complete elimination of genome-edited cells.

Cas 9 as a model for evaluating the immunogenicity of novel modalities

FDA

The non-trivial task of selecting a cohort of donors for ex vivo assays

Presentation of peptides derived from the protein by the major histocompatibility complex (MHC) is a necessary (albeit not sufficient) condition for eliciting an immune response.

The MHC is polygenic: every individual contains several MHC genes The MHC is polymorphic: The population has variants of each gene The MHC genes are the most polymorphic genes in the human genome

FDA

Identifying potential promiscuous T-cell epitopes on Cas9: The peptides and the markers

209, 15 mer peptides		
NLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKY Pool 2 Pool 3		
VAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGW		Activates innate and adaptive immune
DIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLK	IFN-v	responses; triggers class-switching of B-cell
Pool 5 Pool 6 IAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELT		receptors/antibodies from IgM to IgG2
Pool 7		
Pool 8 Pool 9 FIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDM		Associated with maturation of dendritic cells
Pool 10 EGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETFK	TINT-CC	permitting antigen presentation
Pool 13		
FLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKE		Induces clonal expansion of effector I-cells
Pool 14 Pool 15		primed with the antigen
PHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLL		printed with the difficen
Pool 16 VYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR		
Pool 17 Pool 18		
IKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKING		
)	
Pool 20 Pool 21		

Flow cytometry-based assay to identify stimulation of CD4+ & CD8+ cells

RESPONDER:

- The cell counts for each Donor/Protein/cytokine was compared to its respective unstimulated value
- The p values were <u>adjusted</u> using the Bonferroni method
- Adjusted p-values avoid spurious false-positive rates due to multiple testing

Flow cytometry-based assay to identify stimulation of CD4+ & CD8+ cells

FDA

Experimental identification of biologically relevant MHC IIrestricted T-cell epitopes

- Peptide presentation (on MHC Class II) measured in an MHC-Associated Peptide Proteomics (MAPPs) assay
- Activation of CD4+ T cells measured by flow cytometry using the markers: IFN-γ, TNF-α, IL-2

Sr	Pontido	Position
#	Герше	(SaCas9)
1	LFDYNLLTDHSELSGINPYEARV	71 - 93
2	SVKYAYNADLYNALNDL	246 - 262
3	NADLYNALNDLNNLVITRDENEKLE	252 - 276
4	KEILVNEEDIKGYR	301 - 314
5	LDQIAKILTIYQSSE	348 - 362
6	NLNSELTQEEIEQISNLKGYTGTHN	370 - 394
7	AINLILDELWHTNDNQIA	399 - 416
8	ILDELWHTNDNQIAIFNR	403 - 420
9	TNDNQIAIFNRLKLVPK	410 - 426
10	LVDDFILSPVVKRSFIQS	440 - 457
11	IQSIKVINAIIKKYGLPND	455 - 473
12	LPNDIIIELAREKNSKDA	470 - 487
13	EGKCLYSLEAIPLEDL	531 - 546
14	NYEVDHIIPRSVSFDNSFNN	552 - 571
15	TPFQYLSSSDSKISYE	587 - 602
16	KDDKGNTLIVNNLNGLYDKDNDKL	793 - 816
17	LLMYHHDPQTYQK	827 - 839
18	DEKNPLYKYYEETGNYLTKYS	849 - 869
19	GNYLTKYSKKDNGPV	862 - 876
20	LDNGVYKFVTVKNLDVIK	918 - 935
21	KENYYEVNSKCYEEAK	936 - 951
22	ISNQAEFIASFYNNDLIK	956 - 973

Simhadri, Hopkins, McGill, Mukherjee, Zhang & Sauna. Nature Communications 12: 5090

The challenge of identifying MHC I associated peptides

Monoallelic cells gift of Devin B. Keskin: *Sarkizova et al. Nature Biotechnology 38:199-209*

Identification of Cas9 peptides presented by MHC-I

Cas9 peptides identified on MHC-I variants

		Donor-1	Donor-2	Donor-3	Donor-4	Donor-5	Donor-6	Donor-7	Donor-8	Donor-9	Donor-10	
Unique Peptides	Amino	*01:01	*02:01	*11:01	*23:01	*24:02						HLA_A1
	acid	*01:01	*02:01	*11:01	*23:01	*24:02						HLA_A2
	(start-						*35:01	*08:01	*07:02	*27:02	*44:02	HLA_B1
	end)						*35:01	*08:01	*07:02	*27:02	*44:02	HLA_B2
EEIEQISNLKGY	378 - 389											
YLIEKIKL	519 - 526											
HIIPRSVSF	557 - 565											
SINGGFTSFLR	675 - 685											
MPEIETEQEY	741 - 750											
VYLDNGVYKF	916 - 925											
GVYKFVTVK	921 - 929											
NRIEVNMIDITY	990 - 1001											

Cas9 peptides identified on MHC-I variants

		Donor-1	Donor-2	Donor-3	Donor-4	Donor-5	Donor-6	Donor-7	Donor-8	Donor-9	Donor-10	
Unique Peptides	Amino	*01:01	*02:01	*11:01	*23:01	*24:02						HLA_A1
	acid	*01:01	*02:01	*11:01	*23:01	*24:02						HLA_A2
	(start-						*35:01	*08:01	*07:02	*27:02	*44:02	HLA_B1
	end)						*35:01	*08:01	*07:02	*27:02	*44:02	HLA_B2
EEIEQISNLKGY	378 - 389											
YLIEKIKL	519 - 526											
HIIPRSVSF	557 - 565											
SINGGFTSFLR	675 - 685											
MPEIETEQEY	741 - 750											
VYLDNGVYKF	916 - 925											
GVYKFVTVK	921 - 929											
NRIEVNMIDITY	990 - 1001											

NetMHCpan-4.1 predictions

	•	•		
Peptide	%EL-rank	Rank (from 5220)	HLA	
SINGGFTSFLR	1.031	68	HLA-A*1101	All MS identified pentides
GVYKFVTVK	0.03	2	HLA-A*1101	All WS Identified peptides
VYLDNGVYKF	0.002	1	HLA-A*2301	are very strong predicted
VYLDNGVYKF	0.003	1	HLA-A*2402	Binders, i.e within the top ~0.1%
YLIEKIKL	0.046	5	HLA-B*0801	(top < 10) of the 5 220 8-12 mor pontide
HIIPRSVSF	0.02	1	HLA-B*0801	
NRIEVNMIDITY	0.204	8	HLA-B*2702	within Cas9
MPEIETEQEY	0.01	1	HLA-B*3501	
EEIEOISNLKGY	0.175	8	HLA-B*4402	

How far have we come? Example from VACV

<u>83 epitopes have been identified within 767,788 peptides (and tested MHC combinations)</u> contained with the VACV reference proteome

Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system, Paul S. et al., Plos Computational Biology, May 2020

So MHC binding predictions clearly have value -*How are they made?*

SLLPAIVEL YLLPAIVHI TLWVDPYEV GLVPFLVSV KLLEPVLLL LLDVPTAAV LLDVPTAAV LLDVPTAAV LLDVPTAAV VLFRGGPRG MVDGTLLLL YMNGTMSQV MLLSV ~ "NR(What can we learn from IEN GEN 4,200,000 such measurements DSY PSI covering more than 1000 GIG RKI different MHC molecules? YRY I T F

TGAPVTYST VIYQYMDDL VLPDVFIRC VLPDVFIRC AVGIO GAGIGVAVL IAGIGILAI LIVIGILIL LAGIGLIAA VDGIG KARDPHSGH KACDPHSGH ACDPHSGHF SLYNTVATL RGPGF AVFDRKSDA LLDFVRFMG VLVKSPNHV GLAPPOHLI LLGRN GLCTLVAML FIDSYICOV IISAVVGIL VMAGVGSPY LLWTI VLHDDLLEA LMWITQCFL SLLMWITQC QLSLLMWIT LLGAT ISNDVCAQV VKTDGNPPE SVYDFFVWL FLYGALLLA VLFSS YTAFTIPSI RLMKODFSV RLPRIFCSC FLWGPRAYA RLLQETE NMFTPYIGV LMIIPLINV TLFIGSHVV SLVIVTTFV VLOWASI VVLGVVFGI ILHNGAYSL MIMVKCWMI MLGTHTMEV MLGTHTM GLYDGMEHL KMVELVHFL YLQLVFGIE MLMAQEALA LMAQEAI EAAGIGILT TLDSOVMSL STPPPGTRV KVAELVHFL IMIGVLVGV ALCKWGLLL LLFAGVQCQ VLLCEDIAV YLSTAFARV YLLEMLWRL SLDDYNHLV RTLDKVLEV GLPVEYLQV KLIANNTRV FIYAGSLSA KLVANNTRL FLDEFMEGV ALOPGTALL VLDGLDVLL SLYSFPEPE ALYVDSLFF SLLOHLIGL ELTLGEFLK MINAYLDKL AAGIGILTV FLPSDFFPS SVRDRLARL SLREWLLRI LLSAWILTA AAGIGILTV AVPDEIPPL FAYDGKDYI AAGIGILTV FLPSDFFPS AAGIGILTV FLPSDFFPS AAGIGILTV FLWGPRALV ETVSEQSNV ITLWQRPLV

/PLLI	SLLGLLVEV	ALLPPINIL	TLIKIQHTL
QSGRQ	gldvltakv	RILGAVAKV	QVCERIPTI
JVASI	FLLWATAEA	SLPDFGISY	KKREEAPSL
JISNF	' ALSDHHIYL	GLSEFTEYL	STAPPAHGV
VRSL	YMNGTMSQV	GILGFVFTL	ILKEPVHGV
DFFPS	CLGGLLTMV	FIAGNSAYE	KLGEFYNQM
GILTV	YLEPGE	P April 202	DQVPFSV
LAIT		и Арп 202	3 17 17 17 17 17 17 1
ζGS	Summary	Motrice	
RIL	Summary	vietrics	
GIA Stt	Peptidic Epitor	pes	1,612,246
RAF	Non-Peptidic E	Epitopes	3,188
ISF	T Cell Assays		511,679
JVV PCN -	B Cell Assays		1,403,266
SDF	MHC Ligand A	ssays	4,802,905

MITC LIYanu Assays	4,002,905
Epitope Source Organisms	4,450
Restricting MHC Alleles	1,005
References	24,670

Data interpretation (fitting mathematical models)

AADFPGIAR	0.085
AAVDLSHFL	0.169
FTFDLTALK	0.085
WVWDTWPLA	0.085
TMMRHRREL	0.085
LLPYPIAGC	0.085
LMFSTSAYL	0.735
KLNENIIRF	0.536
MRVLHLDLK	0.085
GLICGLRQL	0.196
FEFILRYGD	0.085
EFVSANLAM	0.085
RAAHRRQSV	0.085
SPLHVFVAV	0.085
RTFGKLPYR	0.085
GSLFTEQAF	0.197
SYGNANVSF	0.349
CSEVPQSGY	0.085
GSEDRDLLY	0.085
LNINKNGSF	0.430

	0.036
	0.227
	0.131
	0.147
	0.338
	0.082
er	0.713
	0.467
r	0.044
	0.239
r	0.032
	0.162
	0.126
	0.050
	0.087
	0.392
	0.181
	0.169
	0.187
	0.425

HLA specificities

HLA polymorphism

The IMGT/HLA Sequence Database currently encompass more than 24,000 HLA alleles

Source: https://www.ebi.ac.uk/ipd/imgt/hla/stats.html

Pan-specific prediction methods

NetMHC

NetMHCpan

Peptide	Amino acids of HLA pockets	HLA	Aff
VVLQQHSIA	YFAVLTWYGEKVHTHVDTLVRYHY	A0201	0.131751
SQVSFQQPL	YFAVLTWYGEKVHTHVDTLVRYHY	A0201	0.487500
SQCQAIHNV	YFAVLTWYGEKVHTHVDTLVRYHY	A0201	0.364186
LQQSTYQLV	YFAVLTWYGEKVHTHVDTLVRYHY	A0201	0.582749
LQPFLQPQL	YFAVLTWYGEKVHTHVDTLVRYHY	A0201	0.206700
VLAGLLGNV	YFAVLTWYGEKVHTHVDTLVRYHY	A0201	0.727865
VLAGLLGNV	YFAVWTWYGEKVHTHVDTLLRYHY	A0202	0.706274
VLAGLLGNV	YFAEWTWYGEKVHTHVDTLVRYHY	A0203	1.000000
VLAGLLGNV	YYAVLTWYGEKVHTHVDTLVRYHY	A0206	0.682619
VLAGLLGNV	YYAVWTWYRINNVQTDVDTLIRYHY	A6802	0.407855

RBIOLOGI		News Control of Contro	GROUPS	CBS PREDICTION SERVERS	CBS DATA SETS	PUBLICATIONS	EDUCATION PROGRAM
ENCEANA LYSIS CBS	STAFF	CONTACT		INTERNAL	CBS BIOINFORMATICS TOOLS	CBS COURSES	OTHER BIOINFORMATICS LINKS
CBS >> CBS Pres	liction Servers >> Net	MHCpan			2.1		
NetMHC	an Server						
NetMHCpan se	rver predicts bindir	g of peptides to 478 and	791 different HLA A and	B alleles using artificial ne	ural networks (ANNs). This i	s a beta version of the s	server, and it is in the pri
being updated	with other features (prediction of user define	d MHC molecules, ect)				
The prediction v	values are given in	nM IC50 values.					
Note! On Wedr made prior to t	nesday the 19th of his date, please co	October, a minor error ntact mniel@cbs.dtu.dk	in service has been corre (Morten Nielsen).	cted. This might lead to s	mall changes in the predict	tion values. If you need	to reproduce prediction
The project is a	collaboration betw	een CBS and MML					
	Instruct	one:		Output format		Articie a	abstrect
SUBMISSION	Instruct	one		Output format		Article a	abstrect
SUBMISSION	instruct I	one		Output format		Article a	ibstrect
SUBMISSION Paste a single s	Instruct I sequence or severa	ons I sequences in <u>FASTA</u> or	PEPTIDE Smir (il PEPTID	Output format	c below) format into the field	Article a	Ibetrect
SUBMISSION Paste a single s	Instruct I sequence or severa	ens I sequences in <u>FASTA</u> or	PEPTIOE smar (il PEPTIO	Output format	c below) format into the field	Article a	ibetraci
SUBMISSION Paste a single s	Instruct Nequence or severa	onal I sequences in <u>FASTA</u> or	PEPTIOE Smir (il PEPTIO	Output format	x below) format into the field	Articio a	Ibstred
SUBMISSION Paste a single s	Instruct 4 Requence or severa	one <u>:</u> I sequences in <u>FASTA</u> or	PEPTIDE Smer (Il PEPTID	Output format	x below) format into the field i	Article e	abatrect
SUBMISSION Paste a single s	Instruct	one <u>:</u> I sequences in <u>FASTA</u> or	PEPTIOE Smer (II PEPTIO	Output format	t below) format into the field i	Article e	ibatrect
SUBMISSION Paste a single s	Instruct	ons I sequences in <u>FASTA</u> or	<u>PEPTIOE Smer</u> (I PEPTIO	Output format	c below) format into the field.	Article a	abaires:

The new kid in town

Michal Bassani-Sternberg et. al, MCP, 2015

Interpreting and benefitting from MS eluted ligand data sets

NNAlign_MA

Train a pan-specific predictor – also covering HLA's NOT part of training data

NNAlign_MA

The Frank performance measure - Reproducing natures choice

Prediction accuracy

F-rank

Historically, MHC class II tools have poor performance and many false positive predictions

An automated benchmarking platform for MHC class II binding prediction methods

Massimo Andreatta, Thomas Trolle, Zhen Yan, Jason A Greenbaum, Bjoern Peters, Morten Nielsen ∞

Bioinformatics, Volume 34, Issue 9, 1 May 2018, Pages 1522–1528, https://doi.org/10.1093 /bioinformatics/btx820

Integrating MS eluted ligand data has completely changed this

Reynisson et al. J Proteome Res. 2020 Apr 30. doi: 10.1021/acs.jproteome.9b00874. Nilsson, Kaabinejadian et al., Commun Biol. 2023

MHC binding predictions is a done deal

Immunity

Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes

Graphical abstract

Authors

Julien Racle, Philippe Guillaume, Julien Schmidt, ..., Michal Bassani-Sternberg, Alexandre Harari, David Gfeller

Completing the puzzle: Accur class II across loci using tailor learning

Jonas B. Nilsson¹, Saghar Kaabineja Balen⁴, William H. Hildebrand³ and M

¹ Department of Health Technology, T Denmark

² Pure MHC, LLC., Oklahoma City, O ³ Department of Microbiology and Im Oklahoma City, OK, United States

⁴ Department of Hematology, Leiden

Nilsson et al, Science Advances 2023

Experimental identification of biologically relevant MHC IIrestricted T-cell epitopes

- Peptide presentation (on MHC Class II) measured in an MHC-Associated Peptide Proteomics (MAPPs) assay
- Activation of CD4+ T cells measured by flow cytometry using the markers: IFN-γ, TNF-α, IL-2

	Sr #	Peptide	Position (SaCas9)
	1	LFDYNLLTDHSELSGINPYEARV	71 - 93
	2	SVKYAYNADLYNALNDL	246 - 262
	3	NADLYNALNDLNNLVITRDENEKLE	252 - 276
>	4	KEILVNEEDIKGYR	301 - 314
	5	LDQIAKILTIYQSSE	348 - 362
	6	NLNSELTQEEIEQISNLKGYTGTHN	370 - 394
	7	AINLILDELWHTNDNQIA	399 - 416
	8	ILDELWHTNDNQIAIFNR	403 - 420
	9	TNDNQIAIFNRLKLVPK	410 - 426
	10	LVDDFILSPVVKRSFIQS	440 - 457
	11	IQSIKVINAIIKKYGLPND	455 - 473
	12	LPNDIIIELAREKNSKDA	470 - 487
	13	EGKCLYSLEAIPLEDL	531 - 546
	14	NYEVDHIIPRSVSFDNSFNN	552 - 571
	15	TPFQYLSSSDSKISYE	587 - 602
	16	KDDKGNTLIVNNLNGLYDKDNDKL	793 - 816
	17	LLMYHHDPQTYQK	827 - 839
	18	DEKNPLYKYYEETGNYLTKYS	849 - 869
	19	GNYLTKYSKKDNGPV	862 - 876
	20	LDNGVYKFVTVKNLDVIK	918 - 935
	21	KENYYEVNSKCYEEAK	936 - 951
	22	ISNQAEFIASFYNNDLIK	956 - 973

Simhadri, Hopkins, McGill, Mukherjee, Zhang & Sauna. Nature Communications 12: 5090

Predicting MAPPs ligands

- Donors were annotated only for DRB1
- Using HLAAssoc 1.0

https://services.healthtech.dtu.dk/servic es/HLAAssoc-1.0/

we can extent this to also cover DRB345

• DRB3,4 to 5 restrictions likely explain more than 25% of the MAPPS data

https://services.healthtech.dtu.dk/services/MHCMotifDecon-1.2/

MHCMotifDecon - 1.2

Motif deconvolution of Multi-allele immunopetidomics data

MHCMotifDecon-1.2 is a supervised method for motif deconvolution of MHC peptidome data. The method uses MHC binding predictions from NetMHCpan-4.1 (for MHC class I) and NetMHCIIpan-4.3 (for MHC class II) to deconvolute and assign likely MHC restriction elements to MHC peptidome data.

In the deconvolution, MS co-immunoprecipitated contaminants are identified and placed in a trash bin.

Submission Instructions Output format Article abstract Downloads

SUBMISSION

Hover the mouse cursor over the **3** symbol for a short description of the options

INPUT TYPE: Class II Paste an input into the field below:

or unload a file in format "Linand ICell line ID1" directly from your local disk

Kaabinejadian et al, Frontiers Immul, 2022

Cleaned-up motif deconvolution

Kaabinejadian et al, Frontiers Immul, 2022

1) Purify HLA-DR molecules with an anti-HLA-DR antibody and

Racle, J., et al. Nat Biotechnol **37**, 1283-1286 (2019) Nilsson et al. Sci Adv. 2023

Protein drug Immunogenicity – Infliximab case-story

Barra et al., Frontiers in Immunology, 2020

Protein drug Immunogenicity – Infliximab case-story

Barra et al., Frontiers in Immunology, 2020

Self-similarity and tolerance

Both MAPPs and insilico models predict antigen presentation NOT immunogenicity

CP Jacobsen et al., work in progress

Acknowledgements

- Immunological Bioinformatics group, DTU-Bioinformatics
 - PhD students, Post-docs, Colleagues
- Collaborators
 - A. Sette, B. Peters. La Jolla Institute of Allergy and Infectious Diseases: IEDB, CEDAR
 - Sofie Pattyn, ImmunXperts
 - Saghar Kaabinejadian, Pure MHC, University of Oklahoma Health Sciences Center
- Funding

"I think you should be more explicit here in step two."

Cas9 peptides identified on MHC-I variants

What is the clinical relevance of the adaptive immune response to Novel Modalities?

What assays, reagents, statistical methods (cut-point determination) do we need to evaluate immunogenicity in the clinic?

Do we need method standardization? Reference standards? Who will bell the cat? Community effort or individual?

Developing in silico tools? Mathematical models? Model Informed Drug Development (MIDD) approaches?

How do we design assays that reflect the influence of the mode of delivery on immunogenicity?

What in silico, in vitro, ex vivo and clinical assessments do we need? Should these be broad based or tailored to the gene editing approach/disease/organ?

Developing in silico tools? Going beyond peptide-MHC antigen presentation predictions. Mathematical models? Model Informed Drug Development (MIDD) approaches?