

EVALUATING IMMEDIATE TYPE DRUG ALLERGY AND IMMUNOSTIMULATION IN VITRO WITH THE BASOPHIL ACTIVATION TEST (BAT)

Dr. Daniel Yerly Head of Laboratory ADR-AC GmbH, Bern, Switzerland

🖂 daniel.yerly@adr-ac.ch

15th EIP Symposium 24th April 2024 - Lisbon

AGENDA

Immediate type drug reactions

- Symptoms
- Mechanisms
- Consequence for the patients

Basophil Activation Test (BAT)

- Background & utility
- Examples

Conclusions

- IgE vs non IgE-mediated activation
- Hypersensitivity to the drug or to the excipient
- Cross-reactivity assessment

Immediate type drug reactions

<u>Within minutes (< 1hour)</u>

Urticaria

Angioedem

Anaphylaxis

Mechanism

- Degranulation of mast cells
- Release of inflammatory mediators

Degranulation of mast cells

Antigen non-specific

Anaphylatoxin receptors (C3a, C5a) MRGPRX2, TLR, Opioid receptors

- First encounter reaction
 - Independent of the adaptive immune system
- No immune memory
- Density of receptors
- Dose dependence
 - Polymorphism

Basophil Activation Test (BAT)

Examples on BAT utility with different drugs

1. Small molecule drugs

- Cross-reactivity: chlorhexidine & alexidine.
- No commercially available specific IgE test for proton-pump inhibitors (PPIs).

2. Biologics (Antibody)

- Dupilumab
- Cross reactivity with excipients

3. Paclitaxel

- Importance of the formulation
- Liposomes vs albumin-based nanoparticles

4. mRNA vaccines

• Assessment of activation mechanism

5. Antigen non-specific stimulation

• Influence of high local dose

Cross-reactivity: chlorhexidine & alexidine

Safety of alexidine in non-cross-reactive cases

Proton-pump inhibitors (PPI)

		with IL-3		no IL-3		no IL-3	
Stimulant	Conc. µg/ml	CD63	SI	CD63	SI	CD203c	SI
Esomeprazol	50	8.4 %	3.4	3.1 %	1.5	14.8 %	7.4
	10	6.2 %	2.5	2.7 %	1.3	10.1 %	5.1
	1	2.8 %	1.1	1.8 %	0.9	2.6 %	1.3
Lansoprazol	50	8.4 %	3.4	3.0 %	1.4	10.2 %	5.1
	10	4.6 %	1.9	1.5 %	0.7	2.2 %	1.1
	1	3.3 %	1.3	0.9 %	0.4	1.8 %	0.9
Omeprazol	50	26.8 %	10.9	21.9 %	10.4	33.6 %	16.8
	10	9.9 %	4.0	3.1 %	1.5	12.4 %	6.2
	1	4.8 %	2.0	2.1 %	1.0	2.6 %	1.3
Pantoprazol	50	14.5 %	5.9	5.5 %	2.6	16.5 %	8.3
	10	11.2 %	4.6	3.7 %	1.8	12.3 %	6.2
Controls	1	5.5 %	2.2	3.8 %	1.8	8.1 %	4.1
Controis							
Buffer		2.4 %		2.1 %		2.0 %	
Anti-lgE		87.2 %		80.4 %		49.1 %	
fMLP		67.4 %		65.4 %		43.4 %	

Patient's symptom: anaphylaxis

Skin test:	
Pantoprazole	++
Omeprazole	+
Esomeprazole	+
Lansoprazole	-

 $SI = \frac{\% \text{ of } CD63^+ \text{ events with drug}}{\% \text{ of } CD63^+ \text{ events in buffer}}$

(Similar calculation for CD203c)

➔ No commercially available assay for specific IgE

- → Skin test feasible only for i.v. formulation
- → High degree of cross-reactivity inside the PPI class

BAT with Biologic antibody dupilumab and excipient (polysorbate 80)

		with IL-3		no IL-3		no IL-3	
Stimulant	Conc. µg/ml	CD63	SI	CD63	SI	CD203c	SI
Dupilumab (Dupixent)	1000	3.1 %	1.5	9.5 %	5.0	21.3 %	11.2
	500	5.5 %	2.6	9.0 %	4.7	21.7 %	11.4
	100	0.9 %	0.4	2.3 %	1.2	7.5 %	3.9
Polysorbat 80	50	16.8 %	8.1	13.3 %	7.0	18.4 %	9.7
	10	13.7 %	6.6	5.8 %	3.1	12.6 %	6.6
	1	0.6 %	0.3	14.1 %	7.4	32.3 %	17.0
Controls							
Buffer		2.1 %		1.9 %		1.9 %	
anti-lgE		76.2 %		75.8 %		59.7 %	
fMLP		81.1 %		78.0 %		54.4 %	

(Similar calculation for CD203c)

- Clear sensitisation detectable to polysorbate 80.
- Sensitisation to dupilumab (dupixent which contains polysorbate 80) is actually due to the excipient of the formulation.

Paclitaxel: importance of the formulation

• Paclitaxel in two different formulations \rightarrow different basophil reactivity.

			with IL	-3	no IL-3	3	no IL-3	
	Stimulant	Conc. µg/ml	CD63	SI	CD63	SI	CD203c	SI
Albumin nanoparticle bound Cremophor EL solvent	Abraxane (Paclitaxel)	1	2.9 %	1.4	0.6 %	0.3	1.0 %	0.4
		.1	2.2 %	1.1	2.2 %	0.9	1.8 %	0.7
		.01	2.0 %	1.0	2.1 %	0.9	1.5 %	0.6
	Taxol (Paclitaxel)	1	20.2 %	10.0	13.3 %	5.7	25.1 %	9.3
Cremophor EL solvent		.1	30.0 %	14.8	19.9 %	8.5	49.6 %	18.4
(polyethoxylated castor oil)		.01	25.8 %	12.8	15.2 %	6.5	40.3 %	14.9
	Controls							
	Buffer		2.0 %		2.4 %		2.7 %	
	anti-IgE		84.8 %		75.0 %		89.0 %	
	fMLP		32.2 %		22.8 %		31.9 %	

• BAT detects reactivity differences in drug formulation changes.

mRNA vaccine to SARS-CoV2 Assessment of activation mechanism

- Both COVID-19 mRNA vaccines activated basophils in sensitized patients.
- Polysorbate 80 has cross-reactivity in (~15%) of the vaccine-sensitised individuals.

CD203c expression (without IL-3)

Ibrutinib significantly reduces the basophil reactivity → suggests the involvement of the IgEspecific pathway.

BAT in unexposed donors (n=5) <u>All</u> reacted to drug X in different formulations

Overall BAT Innocuity SI (n=5) St values, positive in				
Drug / conc	with IL-3 CD63 SI	without IL-3 CD63 SI	without IL-3 CD203c SI	
anti-loF	32.8	21.5	23.6	
fMLP	18.0	17.9	17.6	
Drug X, form. A, 5000 ug/ml	11.5	12.1	9.8	
Drug X, form. A, 1000 ug/ml	12.1	13.2	9.6	
Drug X, form. A, 200 ug/ml	9.0	10.6	6.4	
Drug X, form. A, 40 ug/ml	3.1	4.3	2.8	
Drug X, form. B, 5000 ug/ml	14.3	16.1	15.9	
Drug X, form. B, 1000 ug/ml	17.7	15.8	16.0	
Drug X, form. B, 200 ug/ml	14.9	12.3	12.0	
Drug X, form. B, 40 ug/ml	9.8	9.2	6.4	
PS-80 100	1.9	0.9	1.8	
PS-80 20	1.1	0.8	1.2	
PS-80 5	0.8	1.2	1.1	
PS-80 1	0.6	0.8	1.2	
Formulation A, no drug 5000	1.6	0.9	2.4	
Formulation A, no drug 1000	0.7	0.6	1.2	
Formulation A, no drug 200	0.7	0.8	0.5	
Formulation A, no drug 40	0.7	1.7	0.3	

- Strong local reaction after s.c. infusion
- Modified antibody
- Reactivity in unexposed donor (no sensitisation possible)
- s.c. injection in high concentration
- Reactivity to the drug itself and not to the excipient

Conclusion

- 1. Immediate type reactions:
 - Antigen specific: **IgE-mediated** → BAT positivity in sensitized patients
 - Non-specific stimulation: non IgE-mediated → BAT positivity in drug-unexposed individuals
- 2. Activation mechanism can be evaluated by blocking the different pathways (e.g. lbrutinib).
- 3. Evaluation of cross-reactivity (e.g. PPI).
- 4. Formulation / excipients maybe responsible for reactivity.
- 5. Alternative for serum sample: **indirect BAT with donor basophiles**.
- 6. Dosing considerations based on assessments.
- 7. Basophil reactivity and mediator degranulation:
 - pre-clinical drug development
 - allergy diagnosis

Thank you!

Delighted to discuss further: Dr. Daniel Yerly daniel.yerly@adr-ac.ch

ADR-AC GmbH | Holligenstrasse 91 | 3008 Bern Switzerland | +41 31 371 86 40 www.adr-ac.ch