

Aggregation of therapeutic antibodies enhances dendritic cell uptake and T-cell responses

Marc Pallardy, Maria Lteif, Isabelle Turbica

INSERM UMR 996

Inflammation, Microbiome, Immunosurveillance

Immunogenicity = recognition by the immune system of defined structures = needs mobilization of the adaptive immune response = T-cells

Internalization of proteins in DCs is a key step for the initiation of a T-cell response = dictates the quantity and the quality of presented peptides

Aggregates in biological products

Production process: *bioreactor, purification, formulation*➡ Aggregates elimination well controlled

Injected volume	≤ 100 mL (particles/container)		> 100 mL (particles/mL)	
Particle size	\geq 10 μm	≥ 25 µm	\geq 10 μ m	≥ 25 µm
Light obscuration	6000	600	25	3
Microscopy	3000	300	12	2

European (Ph. Eur. 2.9.19)
US (USP <788>) Pharmacopea

Handling & administration: T°C variations, shaking, light stress...

⇒ visual control & filtration

[&]quot;Rapid aggregation after mixing Avastin® (bevacizumab) or Herceptin® (trastuzumab) with 5% dextrose and human plasma under *in vitro* conditions that simulate the interface of IV infusion" Arvinte et al. (2013)

[&]quot;Nanometer, submicron, and micron protein particles have been evidenced in intravenous saline bags that could inadvertently be delivered to patients" Pardeshi et al. (2020); Kannan et al. (2020)

Antibodies to evaluate different routes of entry into DC

Antibody	Isotype	Characteristics	Target expression on DC	Possible route of entry	ADA incidence
Infliximab (anti-TNF)	IgG1, chimeric	Glycosylated, high mannose (5.5%); galactosyl (40%); low level of sialic acid (<1.3%)	TNF (+/-)	 FcγR CLR (mannose receptors) Target mediated endocytosis 	17-58% (IgG1, IgG4, IgE) T-epitopes identified in healthy donors
Atezolizumab (anti-PDL-1)	IgG1, humanized	N297A mutation → non glycosylated to abrogate Fc function Favorable for aggregation ?	PD-L1 (+)	Membrane interactionTarget mediated endocytosis	13-36% Cancer patients

Nanosized aggregates characterization

UV stress (365 nm, 20h)

Oxidation stress is a common chemical degradation process of mAbs

Native mAbs

mAbs aggregates

Field-flow fractionation - multi angle light scattering (MALS)

	Percentage
Monomer	52.25
Dimers	19.27
Trimers	26.41
Fragment	2.07

- Mixture monomer/aggregates
- Soluble dimers and oligomers <100 nm

Atezolizumab

Native mAbs

mAbs aggregates

	Percentage
Monomer	50.05
Dimers	37.51
Trimers	12.44

T-cell responses to aggregates?

Autologous co-culture model to identify naïve T-cells recognizing Infliximab or aggregated Infliximab

□ Identification of a higher number of specific T cells in response to IFX aggregates for each donor

T-cells recognize UV-aggregated IFX

Some aggregated IFX-specific T cells recognize ONLY aggregated-derived peptides

MHC class II molecules are required for the activation of naïve CD4 T cells recognizing native and aggregated infliximab.

Hypothesis concerning the augmented recruitment of T-cells

ROUTING

Antigen presentation TCR recruitement

To be elucidated at two levels

Pishesha N et al (2022)

The quantity of IFX entering DCs plays a role in T-cell response?

Pathways of entry in DCs IgG **IgG Immune** complexes uptake of particles larger <200nm than 200nm Receptor) **FcR CLR** (mannose **Phagocytosis** Macropinocytosis/ receptor) **Target mediated** Recycling FcR or CLR mediated membrane interaction endocytosis endocytosis **Clathrin mediated endocytosis FcRn** EEA-1 Early endosome **Peptides** Lysosome LAMP-1 Monomeric IgG: recycling Immune complexes : go to degradation Late endosome **Degradation**

N-glycosylation of the Fc fragment

Sialylation:
Sialic acid mainly recognized by
Siglecs and DC-SIGN on DC surface

- Mannosylation:
- Increased serum clearance
- Mannose residues mainly recognized by mannose receptors (MR)/CD205, CD206 and 209 (DC-SIGN)

Fucose

GalNAc Sialic Acid

Fucose is recognized by mannose receptor

- N-glycosylation is necessary for the recognition by FcγR
- MR recognition

<u>Uptake calculation:</u> difference between mean fluorescence intensity of surface-localized (4°C) and internalized (37°C) N or aggregated IFX.

IFX aggregates are more internalized in comparison to native IFX

Receptors implicated in IFX N or IFX-UV uptake by DC

FcR gamma RIIa is not playing a major role in native and aggregates IFX internalization

Internalization pathways implicated in IFX N or UV uptake by DC

Chlorpromazine: inhibits endocytosis Amiloride: inhibits macropinocytosis Cytochalasine D: inhibits phagocytosis

Relative fluorescence

(delta MFI without inh – delta MFI with inh) \times 100

Relative uptake by DCs (%) IFX UV IFX N Cytochalasin D Chlorpromazine Amiloride

n=3

Receptors implicated in IFX N or UV-IFX uptake by DC

IFX: 5,5% high mannose in its Fc portion→ interaction with mannose recognizing CLR

Internalization of aggregated IFX is inhibited by mannan (67% vs 22% for IFX N)

Mannose-dependent endocytosis is one of the major pathways for IFX aggregates internalization

Probably not CD209 (DC-SIGN; results with DG-75 transfected cell line are negative)

CD206 ? CD205 ?

Routing of IFX N or UV in endosomal compartments of DC

Augmentation of IFX-UV aggregates intake leads to an increase in cellular compartments?

Endosome de recyclage Endosome de tri Endo-lysosome EEA-1 Merge IFX Merge EEA-1 IFX UV low high

Higher co-localization rate between IFX UV and EEA-1 in comparison to IFX N

PCC: Pearson correlation coefficient = co-localization

15 min incubation with IFX N or IFX UV aggregates

Higher colocalization rate between IFX UV and LAMP-1 in comparison to IFX N

PCC: Pearson correlation coefficient = co-localization

60 min incubation with IFX N or IFX UV aggregates

Higher co-localization rate between IFX UV and HLA-DR in comparison to IFX N

PCC: Pearson correlation coefficient = co-localization

120 min incubation with IFX N or IFX UV aggregates

Effect of CLR mediated endocytosis on T cell activation

Autologous DC-T cell co-culture model: measure of T cell proliferation via CFSE staining

Quantification of ATZ N or ATZ-aggregates uptake by DCs: direct labeling

- ATZ aggregates are more internalized compared to native ATZ
- Aggregates internalization is independent of glycosylation
- Target oriented?

<u>Uptake calculation:</u> difference between mean fluorescence intensity of surface-localized (4°C) and internalized (37°C) N or aggregated ATZ

In conclusion: nanosized aggregated

Dendritic cell

- No modification moDC phenotype
- Higher internalization of mAb aggregates by moDC
- Internalization of aggregates via a mannose-dependent endocytosis for IFX
- Target-oriented for ATZ ?
- Impact on peptide presentation and T cell response, mechanisms?

T cell response

- Increased recruitment of T-cells with aggregates
- Detection of naïve T-cell recognizing mAb aggregates but not the native protein
 - Aggregation increase the number of presented peptides derived from the antibody?
 - Peptides with low avidity participate to T-cell recruitment?
 - Increase of the number of T-cells recruited?

and/or

- Neo-peptides are generated by the aggregation process?
- New T-cells recruited ?

Next steps

- Identification of the pathways involved in aggregates internalization
 - Relationship with the structure and/or mode of entry (MR, target-oriented, FcR, mixed)
 - Use of other antibodies
 - Quantification of mAbs internalization (see Estefania Tumbaco-Valarezo poster, collaboration with Servier)
- In search of the mechanisms leading to increase of naïve T-cells recruitment
 - Augmentation of immunodominant epitopes ?
 - Specific aggregate epitopes ?
- Strategy
 - MHC associated peptide proteomics (MAPPS) using aggregates
 - Identify TCR clonotypes (increase? specificity?)

ACKNOWLEDGEMENTS

Inserm UMR 996
Isabelle Turbica
Marc Pallardy
Myriam Nabhan
Myriam Lteif
Estefania Tumbaco-Valarezo

PEPR (Programmes et équipements prioritaires de recherche)

« Biothérapie et bioproduction de thérapies innovantes » (BBTI)

ACCREDIA project (coordinator: Bernard Maillère)

